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We investigate a large ensemble of quadratic integrate-and-fire neurons with heterogeneous input currents
and adaptation variables. Our analysis reveals that, for a specific class of adaptation, termed quadratic spike-
frequency adaptation, the high-dimensional system can be exactly reduced to a low-dimensional system of
ordinary differential equations, which describes the dynamics of three mean-field variables: the population’s
firing rate, the mean membrane potential, and a mean adaptation variable. The resulting low-dimensional firing
rate equations (FREs) uncover a key generic feature of heterogeneous networks with spike-frequency adaptation:
Both the center and width of the distribution of the neurons’ firing frequencies are reduced, and this largely
promotes the emergence of collective synchronization in the network. Our findings are further supported by
the bifurcation analysis of the FREs, which accurately captures the collective dynamics of the spiking neuron
network, including phenomena such as collective oscillations, bursting, and macroscopic chaos.
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I. INTRODUCTION

Neuronal firing rate equations (FREs) are mathematical de-
scriptions of the collective activity of large ensembles of neu-
rons, typically in the form of one or a few ordinary differential
equations [1–4]. These population models offer an approxi-
mate, coarse-grained description of the dynamics of spiking
neuron networks—generally applicable near asynchronous
states—and serve as valuable tools for both theoretical and
computational analyses of large-scale neuronal dynamics.

Over the last decade, a singular class of FREs has been
obtained [5,6]. These models, often referred to as "next-
generation neural mass models" [7], are derived exactly from
large networks of heterogeneous quadratic integrate-and-fire
(QIF) neurons, and offer two key advantages over traditional
firing rate models: First, they provide an exact link between
the microscopic dynamics of individual spiking neurons and
the evolution of two macroscopic variables—mean firing rate
and mean membrane potential. Second, they fully capture
both transient dynamics and synchronous states in spiking
neuron networks. Furthermore, the mean-field theory used
to derive these exact FREs, which is closely related to the
Ott-Antonsen theory for populations of phase oscillators [8],
is versatile enough to accommodate additional biological re-
alism [7,9–25]. As a result, these models have become very
useful to investigate neuronal dynamics [26–33], and are pow-
erful modeling tools in neuroscience [34–45].

A significant theoretical challenge remains in extending the
theory to derive exact FREs for populations of QIF neurons
with additional dynamic variables [46]. Several recent studies
have developed approximate FREs seeking to describe the
collective dynamics of such "extended" QIF neurons [47–57].
A particular example is ensembles of QIF neurons with spike-
frequency adaptation (SFA) [47,48], which is a prominent
feature of neuronal dynamics by which many neuron types
reduce their firing frequencies in response to sustained current

injection, see, for example [58–61]. While an exact mean-field
reduction of heterogeneous QIF neurons with SFA remains
elusive, some studies have approximated the QIF neuron
model with SFA by assuming that the neuron-specific adap-
tation variables can be represented by a global adaptation
variable that evolves according to the population’s firing rate
[47,48]. This approximation allows for an exact reduction
of the spiking neuron network to a system of FREs, incor-
porating the additional adaptation dynamics, and captures
key collective phenomena that are reminiscent of spiking
networks with SFA, such as the emergence of collective syn-
chronization (due to the presence of slow negative feedback),
and bursting.

However, key aspects of the microscopic dynamics associ-
ated with the neuron-specific nature of SFA are not adequately
captured by such firing rate models. One overlooked phe-
nomenon arises in populations of neurons with SFA and
heterogeneous firing frequencies: neurons with intrinsically
high firing rates undergo a more pronounced reduction in fir-
ing frequency due to SFA compared with neurons with lower
firing rates. As a result, the overall level of frequency hetero-
geneity diminishes, significantly promoting the emergence of
collective synchronization [62,63].

In this work, we take an alternative approach to reduce
the dynamics of an extended QIF model with a specific form
of SFA, termed quadratic spike-frequency adaptation (QSFA)
[58], to an effectively one-dimensional QIF model [64]. This
allows for analytical progress and the exact derivation of
a low-dimensional system of FREs for large networks of
heterogeneous QIF neurons with QSFA. In our approach,
the adaptation variables remain neuron-specific, ensuring that
neurons with higher intrinsic firing rates undergo greater
adaptation than those with lower firing rates. This is reflected
in an adaptation-induced reduction in the level of heterogene-
ity in the FREs, significantly enhancing the emergence of
collective synchronization in the network.
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The paper is structured as follows: In Sec. II, we introduce
the generalized QIF model with SFA and describe the approx-
imations leading to the QSFA model. We also illustrate the
effects of QSFA on the steady states of QIF neuron popu-
lations with heterogeneous inputs, demonstrating that QSFA
results in both a shift and narrowing of the firing rate distri-
bution. In Sec. III, we outline the derivation of the FREs for
a heterogeneous population of QIF neurons with QSFA. In
Sec. IV, we analyze the bifurcations in the QIF-FRE model
with QSFA and present phase diagrams that summarize the
model’s possible dynamic regimes. Additionally, we compare
numerical simulations of the microscopic QIF network with
those of the low-dimensional QIF-FRE model. Finally, in
Sec. V, we summarize and discuss our findings.

II. POPULATIONS OF HETEROGENEOUS
QIF NEURONS WITH SFA

We consider a population of N neurons with membrane
potentials Vj=1,...,N , and membrane time constant τm, which
evolve according to the following QIF model [65–67]

τmV̇j = V 2
j + I j − a j, (1a)

τaȧ j = −a j + β f j . (1b)

The last two terms on the right-hand side of Eq. (1a) vary from
neuron to neuron and represent, respectively, constant inputs
and adaptation currents of strength β � 0. The definition of
the QIF model requires a resetting rule such that after each
spike—which is marked by the spike time t k

j at which Vj

reaches infinity—the voltage is instantaneously reset to minus
infinity. For the spike resetting at infinity, the spike frequency
(or firing rate) of intrinsically active neurons (I j − a j > 0) is
[65,66]

ν j = 1
πτm

√
I j − a j,

and ν j = 0 for quiescent or excitable neurons (I j − a j � 0).
The adaptation variables a j obey the linear, first-order differ-
ential equations Eq. (1b), where f j measures the frequency of
the spikes of neuron j. SFA is often modeled by substituting
the term f j in Eq. (1b) with the spike train of neuron j, so that
the adaptation variable a j increases by a finite amount β/τa

whenever neuron j undergoes an action potential [58–61,67–
75]; if neuron j does not spike, a j decays to zero with the time
constant τa � τm.

An important dynamical consequence of spike-dependent
adaptation models is that they only slow the firing frequency
of intrinsically firing neurons (I j − a j > 0), but cannot stop
their repetitive firing [59]; certainly, spike-dependent adapta-
tion cannot initiate firing in those neurons that are intrinsically
quiescent (I j − a j � 0) either. Hence, while the number of fir-
ing neurons remains the same, this dynamical feature changes
the distribution of the neurons’ firing frequencies by reducing
not only its mean but also its width.

A. QSFA model

To simplify the analysis of the QIF model Eq. (1), one may
replace the discontinuous spike train of the spike-dependent
adaptation model with a continuous, linear function of the
instantaneous spike-frequency ν j , that is, f j ∝ ν j , see, for

(a)

(c)

(b)

FIG. 1. Dynamics of a quadratic integrate-and-fire neuron with
quadratic spike-frequency adaptation [Eqs. (1) and (2)]. A spike train
of an adapting neuron, in panel (a), is evoked by the onset of the
stimulus shown in panel (c). Panel (b): For t � 50, the adaptation
variable evolves as: aj (t ) = Ijβ/(1 + β )(1 − e−(t−50)(1+β )/τa ), and
converges to a∗

j = 50/3 [see Eq. (3)]. As adaptation builds up, the
frequency of the spikes drops from an initially high onset rate to a
lower, steady-state frequency given by Eq. (4). Parameters: β = 5
and τa = 10τm = 100 ms.

example [76]. Alternatively, here we propose the following
quadratic SFA model

f j = I j − a j, (2)

in which f j is proportional to the square of the spike frequency
of those neurons that are intrinsically active, that is, f j ∝ ν2

j .
Figure 1(a) shows the time series of the voltage variable Vj of
a quiescent QIF neuron with QSFA that receives a step input
current at t = 50 ms and becomes self-oscillatory. Initially,
the adaptation variable is aj (0) = 0, and then exponentially
converges to the fixed point of Eq. (1b),

a∗
j = β

1+β
I j . (3)

Accordingly, the steady-state frequency of the QIF neuron
(often referred to as the neuron’s f-I curve) is [77]

ν j = 1
πτm

√
I j

1+β
, (4)

if I j > 0, and ν j = 0 otherwise. Equation (4) shows that it
is exclusively the sign of I j that determines the dynamical
character of each neuron: QSFA either slows the firing rate of
intrinsically active neurons (I j > 0) without stopping it, or it
brings quiescent neurons (I j < 0) closer to their firing thresh-
old, yet without inducing firing. The ratio between active
and quiescent neurons thus remains the same. And while the
frequencies f j in Eq. (2) become negative for I j < 0, this only
alters the shape of the inputs’ subthreshold distribution but
does not influence the level of activity of the population.

The choice of the QSFA model (2) has two benefits that
critically simplify the study of the mean-field population
model: First, Eq. (1b) becomes independent of the particular
state of neuron j, so that the dynamics of the QIF neurons
[Eq. (1a)] becomes effectively one-dimensional. Second, due
to the quadratic dependence of f j on the neuron’s frequency,
the adaptation variables acquire the same distribution type as
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(a) (b)

FIG. 2. Quadratic spike-frequency adaptation (QSFA) reduces
both the center and width of the firing frequency distributions in
populations of heterogeneous quadratic integrate-and-fire neurons.
We show the graph of Eq. (5) with a Lorentzian distribution of
currents g(I ) for different levels of the adaptation strength β, and
for a population where the majority of neurons are: (a) intrinsically
spiking neurons, Ī = 2.5; or (b) quiescent neurons, Ī = −1. In each
case, the area under the three graphs is the same, indicating that
QSFA does not alter the proportion of intrinsically spiking neurons
in the population. Parameters: � = 1, τm = 10 ms.

that of the parameters I j . In particular, we will show that, if
both I j and a j (0) are distributed according to a Lorentzian dis-
tribution, the variables a j remain Lorentzian-distributed at all
times. Notably, this allows us to apply the technique originally
proposed in [5] to derive an exact, low-dimensional system of
FREs that exactly describes the dynamics of a population of
QIF neurons with QSFA [Eqs. (1) and (2)] in the N → ∞
limit.

B. Effect of QSFA on the distribution of firing frequencies

Before starting the derivation and analysis of the FRE with
QSFA, it is illustrative to investigate the effect of QSFA on the
steady-state distribution of firing frequencies of a population
of (noninteracting) QIF neurons. We begin by identifying two
important outcomes of Eq. (4) that generally occur in popula-
tions of extended QIF neurons [Eq. (1)]: Both the center and
the width of the firing frequency distribution asymptotically
shift to zero as the level of SFA is increased. That is, an
overall decrease in activity in the population is accompanied
by a global homogenization of the firing rates, compensating
for the population’s intrinsic heterogeneity. For the special
case of QSFA, Eq. (3) shows the important property that the
fixed point values a∗

j acquire the same distribution type as that
of parameters I j , where both the center and width of the a∗

j
distribution are scaled by the factor β/(1 + β ). Effectively,
this leads to a rescaling of both the center and width of the I j

distribution by 1/(1 + β ). In consequence, the proportion of
firing (or quiescent) neurons in the population is determined
solely by the distribution of inputs I j .

Finally, we explicitly compute the firing frequency dis-
tribution for QIF neurons with QSFA. Given a distribution
g(I ) of inputs I j , the (stationary) distribution of firing rates
P0(ν) = g(I )|dI/dν|, with I (ν) = (1 + β )(πτmν)2, satisfies

P0(ν) = 2(1 + β )(πτm)2ν g((1 + β )(πτmν)2). (5)

In Fig. 2, we show how this distribution changes with increas-
ing adaptation strength β > 0 for a Lorentzian distribution
of inputs I j , g(I ) = �/π [(I − Ī )2 + �2]−1, of width �, and
centered at positive (Ī = 2.5) and negative (Ī = −1) values.

Increasing β shifts the center of the distribution to the left and
reduces its width. Integration of P0(ν) shows that the area un-
der the graphs is independent of β. This indicates that QSFA
does not alter the proportion of intrinsically spiking neurons
in the population, which is solely determined by g(I ) [78].

III. FREs WITH QSFA

In Sec. II, we showed that QSFA strongly shapes the dis-
tribution of spike frequencies in populations of QIF neurons
with distributed inputs. In the following, we demonstrate that
this greatly influences the synchronization properties of large
networks of recurrently coupled spiking neurons.

To investigate nontrivial collective dynamics of the QIF
network [Eqs. (1) and (2)], we first extend our model so
that neurons are able to interact with each other via a mean-
field coupling. Specifically, hereafter we investigate the model
Eq. (1) with

I j (t ) = JτmR(t ) + η j . (6)

The first term consists of a mean-field excitatory coupling
of strength J > 0. This coupling term is mediated by the
population firing rate R(t ), which is obtained from the spike
count function

S(t ) = 1

N

N∑
j=1

∑
k

1

τ

∫ t

t−τ

δ
(
s − t k

j

)
ds,

as limτ→0 S(t ) = R(t ). The terms η j represent constant inputs
that vary from neuron to neuron according to a Lorentzian
distribution centered at η̄, with half-width at half maximum
� > 0:

g(η) = �/π

(η − η̄)2 + �2
. (7)

We now derive a low-dimensional system of differential
equations (the so-called FREs) governing the evolution of the
population firing rate R and mean voltage V of the population
of QIF neurons. To this end, we first decompose the general
solution of the linear ordinary differential equation [Eq. (1b)]
with QSFA (2)

τaȧ j = −(1 + β )a j + β[JτmR(t ) + η j], (8)

into two parts, as

a j (t ) = c je
−t/τ + α j (t ). (9)

Since the first part of the solution decays exponentially to
zero, the specific choice of the constants of integration c j is
irrelevant after a transitory period of the order of the lifetime

τ = τa

1 + β
. (10)

Still, for reasons that will become clear shortly, hereafter we
consider that c j are distributed according to a Lorentzian
distribution centered at c̄, with half-width at half maximum
γ > 0

f (c) = γ /π

(c − c̄)2 + γ 2
. (11)

The second component of the solution [Eq. (9)], α j (t ), is the
particular solution to Eq. (8) with a j (0) = 0. It is important to
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note that, for Lorentzian-distributed inputs η j , the adaptation
variables α j (t ) are also Lorentzian-distributed [79]. Substitut-
ing Eqs. (6) and (9) into Eq. (1a) yields the QIF model

τmV̇j = V 2
j + JτmR(t ) + η j − c je

−t/τ − α j (t ), (12)

where η j , c j , and α j (t ) are all distributed according to
Lorentzian probability density functions.

Equation (12) belongs to a class of mean-field models that,
in the limit N → ∞, admit an exact, low-dimensional descrip-
tion in terms of the population mean firing rate and membrane
potential—see Eq. (19) in Ref. [5]. In the following, we derive
such low-dimensional FRE using the procedure originally
proposed in [5]. Accordingly, we adopt the thermodynamic
limit of Eq. (1) and drop the indices in Eqs. (8) and (12). We
denote by ρ(V |η, c, t ) the density of neurons with voltage V ,
given parameters η and c, whose evolution is governed by the
continuity equation

τm∂tρ + ∂V [ρ(V 2 + JτmR + η − c e−t/τ − α)] = 0. (13)

Substituting the "Lorentzian ansatz"

ρ(V |η, c, t ) = 1

π

X (η, c, t )

[V − Y (η, c, t )]2 + X (η, c, t )2
(14)

into Eq. (13), we find that for each value of η and c, the
variables X and Y satisfy

τm∂tW = i[JτmR + η − c e−t/τ − α − W 2], (15)

where W (η, c, t ) ≡ X (η, c, t ) + iY (η, c, t ). The population
firing rate is related to the variable X (η, c, t ) as

R(t ) = 1

πτm

∫ ∞

−∞
f (c)

∫ ∞

−∞
X (η, c, t )g(η)dηdc, (16)

and, since Y (η, c, t ) is the center of the distribution of mem-
brane potentials ρ(V |η, c, t ), the (Cauchy principal value of
the) integral of Y is the mean membrane potential

V (t ) =
∫ ∞

−∞
f (c)

∫ ∞

−∞
Y (η, c, t )g(η)dηdc. (17)

Equations (16) and (17) couple the infinite set of Eq. (15) with
each other. By considering the analytic continuation of W in
the complex η and c planes, we require Re(W ) to not become
negative. We thus consider the poles of g(η) and f (c) such that
∂t Re(W )|X=0 > 0, that is, η = η̄ − i� and c = c̄ + iγ [80].
Then, by applying Cauchy’s residue theorem, we find that

W (η̄ − i�, c̄ + iγ , t ) = πτmR(t ) + iV (t ). (18)

The dynamics of R and V can be obtained from Eq. (15)
after expanding the adaptation variable α(η, t ) to the com-
plex η-plane and evaluating it at the pole of g(η), η = η̄ −
i�. Defining A and B as the real and imaginary parts of
α(t, η̄ − i�),

α(t, η) = α(t, η̄ − i�) ≡ A(t ) + iB(t ), (19)

and substituting Eqs. (18) and (19) into Eq. (15), yields the
firing rate equations

τmṘ = 1

πτm
[� + γ e−t/τ + B] + 2RV (20a)

τmV̇ = V 2 − (τmπR)2 + η̄ + JτmR − A − c̄ e−t/τ , (20b)

where the initial conditions R(0) = r0 � 0 and V (0) = v0 ∈
R correspond to the width and center, respectively, of the
Lorentzian distribution of initial voltage variables Vj (0). The
evolution of the adaptation variable α can be determined by
substituting Eq. (9) into Eq. (8) and then using Eq. (19). The
solution to the imaginary part of the resulting equation is

B(t ) = �β(e−t/τ −1)
1+β

, (21)

whereas A(t ) obeys

τaȦ = −A(1 + β ) + β[η̄ + JτmR(t )], (22)

with A(0) = 0. Then, after a transitory period of the order of
τ , the dynamics of Eq. (20) converge to the system of FRE,

τmṘ = 1

πτm

�

1 + β
+ 2RV, (23a)

τmV̇ = V 2 − (τmπR)2 + η̄ + JτmR − A. (23b)

The three-dimensional system [Eqs. (22) and (23)] governs
the asymptotic collective dynamics of the population of QIF
neurons Eqs. (1), (2), and (6), where A(t ) corresponds to the
mean of the adaptation variables aj (t ) [81].

IV. COLLECTIVE DYNAMICS OF POPULATIONS
OF QIF NEURONS WITH QSFA

We next analyze the FREs (22) and (23) for globally cou-
pled, excitatory QIF neurons with QSFA. We focus on the
analysis of persistent states (PSs), the onset of collective oscil-
lations, as well as in the presence of network bursts—that have
been also found in spiking neuron networks with alternative
models of SFA [47,48,67,70,75,82]—and collective chaos.

It is well known that strong enough levels of recurrent ex-
citation J may generally produce high activity, asynchronous
states in neural networks—so-called PSs. Although PSs may
be encountered in the presence of adaptation, we find that they
are easily destabilized, giving rise to oscillatory behavior. To
investigate these instabilities, we first evaluate the fixed points
of the FREs (22) and (23), which we write as [13]

R∗ = 
(η̄ + JτmR∗), (24)

where the population’s f-I curve is [83]


(I ) = 1√
1 + β

1√
2πτm

√
I +

√
I2 + �2. (25)

QSFA does not alter the shape of the f-I curve but only
scales it by a factor 1/

√
1 + β, which allows us to borrow the

parametric formula for the saddle-node (SN) boundaries in [5]
(corresponding to β = 0) and use it for any value of β [84].
The phase diagrams in Fig. 3 show two SN bifurcation curves
for various β values, which meet at a cusp point. Within
the region bounded by the SN bifurcations, asynchronous,
low-activity states (LASs) coexist with PSs. In the rest of
the parameter space there exists a unique fixed point that
represents an asynchronous state.

In the absence of adaptation, LASs and PSs are both stable
in the gray-shaded region in Fig. 3(a). For increasing levels
of adaptation, the PS is destabilized via a Hopf bifurcation,
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FIG. 3. Phase diagrams (η̄, J ) for increasing values of adapta-
tion strength β. The saddle-node boundaries (SN; solid black lines)
describe a cusp-shaped region of coexistence between low-activity
(LAS) and persistent (PS) states. Hopf and Homoclinic bifurcations
correspond to the red and dashed blue boundaries, respectively.
White regions: A fixed point corresponding to an asynchronous state
is the only stable state. Gray-shaded regions: Bistability between
two asynchronous states, LAS and PS. Red-shaded regions: Col-
lective oscillations are the only stable state. Yellow-shaded regions:
Bistability between LAS and collective oscillations. See also Fig. 4.
Parameters: � = 1, τa = 10τm = 100 ms.

leading to collective oscillations in the yellow and red-shaded
regions of the diagram in Fig. 3(b) [85]. For small β, the re-
gion where oscillations are the unique attractor (red-shaded in
Fig. 3) is restricted to a loop that pokes out of the cusp-shaped
SN boundaries. As β is increased, the loop grows bigger and
eventually unfolds almost parallel to the η̄-axis, leading to
a vast region of oscillations in parameter space [Figs. 3(c),
3(d), and 4]. Thus, sufficiently strong adaptation always leads
to collective oscillations (provided the strength of recurrent
excitation J is large enough). This even occurs for η̄ < 0,
that is, in networks in which the majority of the neurons are
quiescent in the absence of recurrent excitation.

The enhancement of collective oscillations by adaptation is
greatly favored by the effects described in Sec. II concerning
the distribution of the neurons’ firing frequencies, which are
also clearly reflected in the FRE (23): The level of adaptation
β effectively reduces heterogeneity � by a factor 1/(1 + β ),
without altering the proportion of self-sustained oscillatory
neurons in the population (by virtue of the reduction of the
net input η̄ by the same factor). This homogenization of
the oscillators’ natural frequencies promotes the emergence
of collective synchronization [62,63], which manifests at the
collective level in the form of large-scale oscillations.

Finally, we investigate in more detail the bifurcations of
the FREs (22) and (23) for β = 1, and demonstrate that the
FREs perfectly predict and replicate the collective dynamics
of the spiking network model [Eqs. (1), (2), and (6)]. Figure 4
shows a detailed picture of the phase diagram in Fig. 3(d).
First, we point out that the Hopf bifurcation is supercritical for
positive values of η̄, and becomes subcritical around η̄ ≈ −1,

FIG. 4. Enlarged view of the phase diagram in Fig. 3(d), cor-
responding to strong adaptation, β = 1. The diagram is dominated
by the red-shaded region, where collective oscillations is the only
stable attractor. For η̄ < −1, the Hopf bifurcation (red lines) be-
comes subcritical at a generalized Hopf point (dark red dot), from
where a saddle-node of limit cycle (SNLC) bifurcation emerges
(green line). Close to the cusp-shaped SN bifurcation lines (black
lines), the SNLC curve becomes a homoclinic bifurcation (blue
dashed line) at the blue dot. Between the SNLC/homoclinic and
the Hopf bifurcation curve, there is bistability between low-activity
states and collective oscillations (the yellow star denotes the pa-
rameters of the numerical simulations shown in Fig. 5). Collective
oscillations emerging from the Hopf curve can undergo secondary
bifurcations: we found a period-doubling bifurcation [purple line,
the black star denotes the parameters of the numerical simulations
shown in Fig. (5)] and within the period-doubling curve, there is a
transition to chaotic collective dynamics through a period-doubling
cascade (see Fig. 6).

in a generalized Hopf bifurcation (dark red dot). This gives
rise to a small region of bistability between the asynchronous
fixed point and a limit cycle (around the yellow star in Fig. 4),
which is destroyed in a SN bifurcation of limit cycles (SNLC).
Additionally, immediately after the SNLC bifurcation crosses
the lower SN bifurcation—entering the region of coexistence
between LASs and PSs—the stable limit cycle collides with
the saddle point created in the SN bifurcation (blue dot), and
oscillations are lost in a homoclinic bifurcation (blue dashed
line). On the other hand, we find that collective oscillations
also undergo period-doubling bifurcations, which are always
present for positive η̄. Inspecting the region within the period-
doubling boundary more closely reveals a period-doubling
cascade leading to macroscopic chaos. Collective chaos can
already be found for small values of QSFA-strength β and thus
seems a generic dynamic feature of networks of QIF neurons
with adaptation (see Appendix B).

In Fig. 5, we compare the dynamics of the FREs (22)
and (23), with those of the original network model Eqs. (1),
(2), and (6), using numerical simulations. We show time
series of the mean-field variables R, V , and A for the two
models, as well as a raster plot of the microscopic network.
We initially set the parameters of the models in the bistable
region of Fig. 4—indicated with a yellow star—and select
initial conditions in such a way that the systems converge
to the asynchronous fixed point. Then, at t = 1.5 s, the input
η̄ instantaneously increases from η̄ = 0 to η̄ = 1.74, and the
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FIG. 5. Quadratic integrate-and-fire network simulations of N =
104 neurons with quadratic spike-frequency adaptation follow the
exact firing rate equation (23). An asynchronous low-activity state
coexists with network bursts (cf. dynamics for t � 1.5 s with those
for t > 2.5 s), while an increase in external input drives the collec-
tive dynamics into complex collective oscillations (1.5 < t � 2.5 s).
From top to bottom: Raster plot of the neurons ordered according
to their inputs η j , population firing rate R(t ), mean voltage V (t ),
and mean adaptation A(t ). Parameters: τm = 10 ms, τa = 100 ms,
J = 10, � = 1, and η̄ = −1.74 for t � 1.5 s and t > 2.5 s, and
η̄ = 0 for 1.5 < t � 2.5 s, see yellow and black stars in Fig. 4. For
simulation details, see Appendix A.

systems are placed in a region near the period-doubling bifur-
cation (black star in Fig. 4). As the systems transition from
the asynchronous regime to the new oscillatory state, they
display identical transitory dynamics. Finally, at t = 2.5 s, the
parameter η̄ instantaneously returns to its initial value, but
now the systems do not return to the fixed point; they are
attracted to the stable limit cycle. These simulation results
confirm the validity of the low-dimensional FREs (22) and
(23) to faithfully predict and reproduce the dynamics of the
original, high-dimensional network model.

V. CONCLUSIONS

Firing rate models have been exactly derived for pop-
ulations of QIF neurons [5,6] and extended to incorporate
various forms of synaptic transmission [7,10–17], connectiv-
ity structures [9,86], neuronal heterogeneities [87–89], and
noise [19–25]. However, the reduction method to obtain
exact FREs is limited to ensembles of one-dimensional QIF
neurons. This restriction poses a challenge for investigating
networks that exhibit important dynamical features, such as
SFA.

In this work, we propose a QIF model that incorporates
a QSFA variable, whose evolution depends solely on the pa-
rameters of the QIF model and not on an individual neuron’s
spike train. This feature effectively renders the model one-
dimensional, but it retains the characteristic slowing of the
neuron’s firing frequency in response to an injected current.

(a)

(b)

FIG. 6. Macroscopic chaotic behavior in the quadratic integrate-
and-fire model with quadratic spike-frequency adaptation emerges
through a period-doubling cascade to chaos. (a) Peak values Rpeak of
the population’s firing rate R(t ) during complex oscillatory activity.
(b) Lyapunov exponents computed with the firing rate equations (22)
and (23). A positive Lyapunov exponent indicates the presence of
macroscopic chaos. Parameters as in Fig. 4.

Due to the quadratic dependence of the adaptation variable
on the neuron’s firing rate, the adaptation currents asymptoti-
cally match the distribution of the QIF model’s input currents.
Consequently, the reduction method originally proposed in
[5] can be applied. The resulting exact FREs capture the
neuron-specific nature of SFA—neurons with higher firing
rates undergo greater adaptation than those with lower firing
rates—which is reflected in the FREs as a decrease in popula-
tion heterogeneity and a global reduction in activity.

Numerous studies have investigated the mechanisms by
which SFA synchronizes neural firing [69,70,72,75,90–92].
However, to the best of our knowledge, the potential of SFA
to reduce frequency heterogeneity within a neuronal popu-
lation has not been addressed. In Fig. 2, we show how this
adaptation-induced homogenization markedly enhances the
emergence of global oscillations in the network. We further
confirm that the same homogenization effect occurs in net-
works of heterogeneous neurons with linear SFA, suggesting
that synchronization is likely to be enhanced in these networks
as well.

Additionally, we note that in mean-field models of het-
erogeneous QIF neurons without neuron-specific SFA, the
synchronization region is restricted to a narrower parameter
space (cf. Fig. 2 in [48]). In these models, SFA uniformly
reduces the intrinsic currents across neurons, rendering in-
trinsically spiking neurons quiescent under strong adaptation
conditions. This suppression of firing ultimately leads to
the disappearance of synchronization in regimes of strong
adaptation.

In the QIF model with QSFA, we observed macroscopic
chaotic behavior characterized by a period-doubling route to
chaos, which already appears at low levels of SFA (Fig. 8)
and becomes more pronounced with stronger SFA (Fig. 6).
Interestingly, neither collective chaos nor subcritical Hopf
bifurcations have been reported in firing rate models for
QIF neurons with global SFA [47,48]. However, a similar
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generalized Hopf point—separating subcritical from super-
critical Hopf bifurcations—was identified in [70], along with
a large region of collective oscillations for strong recurrent
excitation and adaptation, in agreement with our findings.

Our numerical simulations of the exact FREs (22) and (23)
closely follow those of the original network model Eqs. (1),
(2), and (6), as expected (see Fig. 5). Still, we advise caution
when interpreting results from microscopic network simula-
tions due to the presence of finite-size fluctuations. In the
QSFA model [Eqs. (1b) and (2)], the adaptation variable
is allowed to take on negative values. This "negative adap-
tation" increases the excitability of quiescent neurons by
reducing the distance between their resting potential and the
spiking threshold, allowing finite-size fluctuations to induce
population bursts that would not occur in infinitely large net-
works, or in SFA models where adaptation is constrained to
non-negative values.

Finally, an interesting direction for future research would
be to consider populations of neurons subject to stochastic
inputs. Recent studies have investigated how different types of
noise can be incorporated and analyzed within the theoretical
framework of mean-field models, such as the one investigated
here (see e.g., [19–25,31,93,94]). However, it remains an open
question whether some of these findings can be extended to
the QIF model with QSFA proposed here.
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APPENDIX A: NUMERICAL SIMULATION
OF QIF NEURONS WITH QSFA

Microscopic network simulations of QIF neurons with
QSFA Eqs. (1), (2), and (6) were performed using the equiva-
lent θ -neuron formulation via Vj = tan(θ j/2) [95]:

τmθ̇ j = 1 − cos θ j + (1 + cos θ j )[η j − a j + JτmR(t )],

τaȧ j = −a j + β[η j − a j + JτmR(t )],

with time step dt = 10−3τm, τm = 10 ms and τa = 100 ms.
The mean firing rate R(t ) was computed via the conformal
mapping of the complex-valued Kuramoto order parameter
Z (t ) [5,21]:

R(t ) = 1

π
Re

{
1 − Z∗(t )

1 + Z∗(t )

}
, Z (t ) = 1

N

N∑
j=1

eiθ j (t );

the asterisk denotes complex conjugation. The mean voltage
was computed as V (t ) = Im{[1 − Z∗(t )]/[1 + Z∗(t )]}. The
mean adaptation, Ā(t ) = ∑N

j=1 a j (t )/N , converges to A(t ) in
the limit N → ∞. In Fig. 5, the voltage variables Vj (0) of
the N = 104 neurons are initially distributed according to
a Lorentzian centered at v0 = −0.8 with half-width at half

(a)

(b)

FIG. 7. Spike-frequency adaptation destroys bistability.
(a) Phase diagram in η̄ − J–plane for β = 1/3. (b) Bifurcation
diagram R∗ vs η̄ for β = 1/3, J = 20.

maximum πr0 = 10π and the adaptation variables aj (0) =
0 follow a Dirac-δ distribution (which belongs to the class
of Lorentzian distributions). This allows an immediate fit
with the FREs (22) and (23) with R(0) = r0, V (0) = v0, and
A(0) = 0.

APPENDIX B: ANALYSIS OF THE QIF FRE WITH QSFA

1. SFA destabilizes persistent states

The phase diagram for the collective dynamics of QIF neu-
rons without QSFA [see Fig. 3(a) with β = 0] is dominated
by SN bifurcation curves that form a cusp-shaped bistability
region, where two asynchronous states coexist: a LAS and a
high-activity, so-called PS. The cusp-shaped region is similar
with and without QSFA by virtue of the f-I curve 
 [cf.
Eq. (25) and Fig. 3]. However, already small values of QSFA
induce oscillatory instabilities, where the stationary LAS and
PS lose stability via Hopf bifurcations (see, e.g., Fig. 7 for
β = 1/3). Here, the subcritical Hopf bifurcation on the lower
branch occurs just before the SN point, gives rise to an un-
stable limit cycle solution, and therefore slightly cuts back
on the bistability region. The supercritical Hopf bifurcation
on the top branch gives rise to a stable limit cycle solution
and, thus, also cuts back on the bistability region of coexisting
LAS and PS [gray-shaded region in Fig. 7(a)]. Moreover, the
limit-cycle solution soon undergoes a period-doubling bifur-
cation and ends in a homoclinic bifurcation [also before the
SN bifurcation; see Fig. 7(b)]. As the limit cycle has quite a
constricted basin of attraction—we invite the interested reader
to actually find the cycling solution for a given mean input η̄—
the bistability between the LAS and the oscillatory solution
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(a)

(b)

(c)

FIG. 8. Collective oscillations and macroscopic chaos exist al-
ready for small quadratic spike-frequency adaptation. (a) Phase
diagram for β = 1/3 (zoom into the loop of Fig. 7(a)) with more
complicated bifurcation lines. (b) Bifurcation diagram R∗ versus η̄

for β = 1/3, J = 9.0. (c) Route to chaos and first three Lyapunov
exponents along the black line in the inset in (a).

[yellow-shaded in Fig. 7(a)] de facto collapses to the LAS. In
sum, QSFA destabilizes PSs and destroys bistability.

2. Collective oscillations, network bursts, and chaos

Collective oscillations become the dominant and unique
attractor in the phase diagram with QSFA (β > 0). For small

QSFA strengths, β = 1/3, the bifurcation scenario is some-
what intricate: Collective oscillations are constrained to the
loop that pokes out of the cusp-shaped (mostly unstable) SN
boundaries [see Fig. 8 for a zoom into the loop in Fig. 7(a)]. In
the bifurcation diagram in Fig. 8(b), we fix the recurrent ex-
citation at J = 9 and decrease the mean input η̄ from −1.4 to
−1.8. At η̄ ≈ −1.5, the PS destabilizes through a supercritical
Hopf bifurcation and gives rise to stable periodic oscillations.
Subsequently, the oscillatory state undergoes a cascade of
period-doubling bifurcations into macroscopic chaos around
η̄ ≈ −1.53 [Fig. 8(c)]. Close to these parameter values, there
are tiny regions where the single-periodic solution regains
stability [solid green curves in the insets of Fig. 8(b)], which
are bounded by SNLC bifurcations (green dot) and period-
doubling bifurcations (magenta dot). For smaller η̄ < −1.56,
the single-periodic solution restabilizes, though the time series
of the firing rate R(t ) feature two peaks during each cycle
[(Fig. 8(c)]. Around η̄ ≈ −1.78, the periodic solution loses
stability in a SNLC bifurcation and the unstable branch con-
nects to the LAS in a subcritical Hopf bifurcation [red dot
in Fig. 8(b)], creating a small region of bistability between a
limit cycle and the LAS.

3. Stronger QSFA facilitates collective oscillations and chaos

As shown in Fig. 3, the region of collective oscillations
increases for larger QSFA strengths β. The tiny loop of dom-
inant oscillatory collective behavior in Fig. 7(a) first becomes
larger and eventually completely unties as collective oscil-
lations expand into the η̄ > 0-plane [Figs. 3(b)–3(d)]. For
intermediate QSFA strengths, collective oscillations outside
of the tiny loop require a substantial amount of recurrent ex-
citation [J � 30 for β = 1/2, see Fig. 3(c)]. The larger β, the
stronger the activity-dependent self-inhibition and moderate
recurrent excitation suffices to generate oscillatory collective
dynamics. At the same time, the intricate bifurcation struc-
ture inside the loop dissolves and more complex oscillatory
behavior can safely be confined within a region bounded by a
period-doubling bifurcation (purple curve in Fig. 4). Here, the
macroscopic chaos emerges more clearly through a period-
doubling cascade and for quite a large range of parameter
values (Fig. 6). In sum, stronger QSFA facilitates collec-
tive oscillations and macroscopic chaos, but these generic
features can also be obtained for small QSFA, as seen in
Appendix B 2.
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