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ABSTRACT

Populations of coupled oscillators can exhibit a wide range of complex dynamical behavior, from complete synchronization to chimera and
chaotic states. We can, thus, expect complex dynamics to arise in networks of such populations. Here, we analyze the dynamics of networks of
populations of heterogeneous mean-field coupled Kuramoto–Sakaguchi oscillators and show that the instability that leads to chimera states
in a simple two-population model also leads to extensive chaos in large networks of coupled populations. Formally, the system consists of
a complex network of oscillator populations whose mesoscopic behavior evolves according to the Ott–Antonsen equations. By considering
identical parameters across populations, the system contains a manifold of homogeneous solutions where all populations behave identically.
Stability analysis of these homogeneous states provided by the master stability function formalism shows that non-trivial dynamics might
emerge on a wide region of the parameter space for arbitrary network topologies. As examples, we first revisit the two-population case and
provide a complete bifurcation diagram. Then, we investigate the emergent dynamics in large ring and Erdös–Rényi networks. In both cases,
transverse instabilities lead to extensive space–time chaos, i.e., irregular regimes whose complexity scales linearly with the system size. Our
work provides a unified analytical framework to understand the emergent dynamics of networks of oscillator populations, from chimera
states to robust high-dimensional chaos.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0243379

Many physical systems are composed of large numbers of inter-
acting oscillatory units. Such complex systems typically display
synchronization patterns that vary in complexity, depending on
the oscillators’ intrinsic dynamics and the nature of their inter-
actions. For instance, the Kuramoto–Sakaguchi model provides
a simple framework in which a population of globally coupled
phase oscillators transitions from incoherence to synchronization
as the strength of the coupling is varied. Interestingly, when cou-
pling two populations of Kuramoto–Sakaguchi oscillators other
collective dynamics may emerge, in which one population dis-
plays a higher degree of synchronization than the other. These
regimes are an example of chimera states, a phenomena that has
been studied in a number of theoretical setups and experimental
works. Here, we extend the analysis of these symmetry-breaking
transitions to the case of N oscillator populations interacting
through arbitrary complex networks. In particular, for ring and
random topologies, we reveal the existence of highly chaotic

states whose complexity increases linearly with the system size,
a situation known as extensive chaos.

I. INTRODUCTION

Chimera states are an intriguing example of non-trivial collec-
tive activity emerging in networks of coupled oscillators. In their
simple original form, chimera states consist of a population of iden-
tical oscillatory units spontaneously splitting into two subgroups: A
completely synchronized cluster and a partially synchronized one.1,2

This form of spontaneous symmetry breaking was first uncovered
in non-locally coupled rings of phase oscillators and has since been
studied in a wide variety of theoretical and real systems.3,4

The Kuramoto–Sakaguchi model5 provides a simple yet pow-
erful framework to understand the collective behavior of complex
oscillatory systems, including chimera states. In this model, each
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oscillator corresponds to a single phase variable that interacts with
the other units through an all-to-all sinusoidal coupling. Remark-
ably, this mean-field setup allows an exact low-dimensional reduc-
tion through the Ott–Antonsen ansatz.6,7 This method provides the
collective dynamics of the system as a single differential equation for
the complex Kuramoto order parameter.8

Researchers have employed the Ott–Antonsen equations to
unveil the nature of chimera states in systems composed of two iden-
tical populations of Kuramoto–Sakaguchi oscillators.9–13 For oscilla-
tors with equal natural frequencies, the chimera state always coexists
with the homogeneous solution (i.e., full synchronization of the two
populations).9 However, for oscillators with distributed frequencies,
the chimera state might emerge through a pitchfork bifurcation
of the homogeneous solution; thus, attracting solutions are always
inhomogeneous in wide regions of the parameter space.10,12 Interest-
ingly, chimera states are not always stable in these regions, leading
to the emergence of other regimes including symmetric oscillations,
antiphase states, or even low-dimensional chaos.10–14

A natural question to ask is how do these results translate to
large networks of more than two populations. A number of recent
studies have addressed this topic15–19 (see also Ref. 7 for a thor-
ough review). In particular, Martens15,16 studied networks of three
populations without disorder and revealed the emergence of dif-
ferent types of chimera states. Lee and Krischer17 extended these
studies and showed the emergence of low-dimensional chaos in
the three-population model. The same authors also investigated six
populations on a ring topology and showed that chimeras are gener-
ally unstable but connected through attracting heteroclinic cycles.18

On the other hand, Laing19 investigated the emergence of chimera
states in rings composed of different number of populations with
non-local coupling. Interestingly, this work shows a chaotic regime
appearing through the instability of chimera states. However, this
irregular state vanishes as the number of populations in the network
increases.

In spite of all this progress, the behavior of identical pop-
ulations of Kuramoto–Sakaguchi populations interacting through
complex networks remains an open problem due to the variety of
possible topological configurations. In this paper, we take on this
challenge and provide a general unifying framework to study the
emergence of spatiotemporal dynamics in these models. We con-
sider networks where the overall external input to each population
is normalized across nodes, thus ensuring the existence of homoge-
neous states. The stability of these trivial regimes to small pertur-
bations can be studied by means of the master stability function,20

which provides the growth rate of arbitrary perturbations as a
function of the eigenmodes of the structural connectivity matrix.
This method allows one to obtain an analytical expression for the
dispersion relation of the homogeneous states.

We show that, for populations with intrinsic disorder, trans-
verse instabilities arise in a wide region of the parameter space
for arbitrary network topologies. In the case of two populations,
such transverse instability corresponds to the pitchfork bifurcation
known to lead to chimera states,10,12 whereas in large networks of
ring and Erdös–Rényi topologies, the dynamics becomes immedi-
ately chaotic with several positive Lyapunov exponents. Numerical
simulations reveal that this is a case of extensive chaos, a dynami-
cal regime in which the dimension of the chaotic attractor increases

linearly with the system size. Extensive chaos, first conjectured
by Ruelle,21 has been widely studied in spatially extended systems
(usually under the more general term of “space–time chaos”),22–28

networks of spiking neurons,29,30 and mean-field models,31 among
other systems. Nonetheless, to the best of our knowledge, this
phenomenon had never been reported in networks of Kuramoto
oscillators before.

Overall, our study presents a general analytical approach to
study the dynamics of networks of identical Kuramoto–Sakaguchi
populations and provides a direct link between the emergence of
chimera states in two-population models and the appearance of
extensive chaos in large networks of such populations.

II. A NETWORK OF KURAMOTO–SAKAGUCHI
OSCILLATOR POPULATIONS

Let us consider N populations composed of M Kuramoto–
Sakaguchi oscillators each.5,7 Each oscillator in a population is
described by their phase variable φj,σ where j ∈ {1, . . . , M} and
σ ∈ {1, . . . , N}. The phase dynamics are given by

φ̇j,σ = ωj,σ + K

M

N
∑

κ=1

cσκ

M
∑

m=1

sin
(

φm,κ − φj,σ − α
)

, (1)

where ωj,σ are the natural frequencies of each oscillator, K is a global
coupling strength parameter, and α is the Sakaguchi phase-shift
parameter. In this equation, both the intra- and inter-population
couplings are set via a mean-field, i.e., if populations σ and κ are
coupled, then all oscillators in both populations contribute identi-
cally to the interaction. Therefore, the only source of irregularity in
the interactions is set by the inter-population connectivity, which
is determined by a weighted complex network with connectivity
matrix C = (cσκ). We impose two constraints on this connectivity:

• We assume that C is row-normalized, i.e.,
∑N

κ=1 cσκ = 1 ; thus,
the total influence received by each oscillator is the same across
populations.

• We assume that C is diagonalizable. This condition is always
fulfilled if the network is undirected.

Generally, we focus on cases where the internal coupling within
each population is larger than the coupling between other popula-
tions, i.e., cσσ > cσκ , for all σ 6= κ . Nonetheless, this is not a strict
requirement.

The natural frequencies of the oscillators ωj,σ are distributed
according to a Cauchy (Lorenz) distribution centered at ω and with
half-width at half-maximum 1. Due to the rotational symmetry of
the model, we can set ω = tan(α)(K cos(α) − 1) without loss of
generality, a choice that will be justified in Sec. III.

The complex Kuramoto order parameter of each population
reads

Zσ = Rσ ei8σ = 1

M

M
∑

m=1

eiφm,σ . (2)
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By considering now that M → ∞, we can apply the Ott–Antonsen
ansatz6 to obtain the evolution of Zσ :

Żσ = (−1 + iω)Zσ + K

2

N
∑

κ=1

cσκ

(

Zκ e−iα − Z2
σ Z∗

κ eiα
)

. (3)

This equation provides the mean-field dynamics of each population
in the network assuming the phases follow a circular Cauchy distri-
bution (Poisson kernel). Moreover, it has been recently shown that
this ansatz is a global attractor of the Kuramoto–Sakaguchi model
for 1 > 0.32 Therefore, Eq. (3) is going to be our main object of study
for the rest of the article.

III. ANALYSIS OF HOMOGENEOUS STATES AND THEIR
STABILITY

In order to explore the dynamics of Eq. (3), first we study its
homogeneous manifold, i.e., all the states in which the N populations
evolve with exactly the same dynamics. By imposing Zσ = Z ∀σ into
Eq. (3) and exploiting the fact that C is row-normalized, we obtain

Ż = (−1 + iω)Z + K

2

(

Z e−iα − Z2Z∗ eiα
)

, (4)

which corresponds to the mean-field equation for a single, isolated
population of Kuramoto–Sakaguchi oscillators.6,7 The dynamics of
this system are well studied: If K < Kc := 21

cos(α)
, the system con-

verges to the incoherent state Z := 0. At K = Kc, the system under-
goes a supercritical Hopf bifurcation (H0 in the figures) giving rise to
a synchronized or coherent state, which takes the form Z := R ei�t,
with

R =
√

1 − 21

K cos(α)

� = ω − tan(α)(K cos(α) − 1).

(5)

These equations show that our choice of the mean frequency
ω = tan(α)(K cos(α) − 1) defines a co-rotating frame in which the
homogeneous coherent solution is a steady state rather than a limit-
cycle (i.e., � = 0). This simplifies the analytical calculations that
follow.

Next, we focus on the stability of the coherent homogeneous
state Z > 0 given by Eq. (5). The same analysis for the incoher-
ent homogeneous solution Z = 0 is provided in Appendix D, where
we show that no instabilities occur below the Kuramoto synchro-
nization transition H0. Let us consider a small perturbation of the
coherent homogeneous state, Zσ = Z + zσ . Linearizing Eq. (3), we
obtain

żσ =
(

−1 + iω − KR2 eiα
)

zσ + K

2

M
∑

κ=1

cσκ

(

zκ e−iα − R2z∗
κ eiα

)

.

(6)

In order to simplify the notation, in the following steps, we
express complex quantities in vectorial form: z = (x, y)T, where x
and y are the real and imaginary parts of z, respectively. Then, Eq. (6)

can be expressed as

żσ = Azσ + B

M
∑

κ=1

cσκzκ , (7)

where

A =
(

1 − K cos(α) −1 tan(α)

1 tan(α) 1 − K cos(α)

)

(8)

and

B =
(

1 1 tan(α)

−K sin(α) + 1 tan(α) K cos(α) − 1

)

. (9)

These expressions for A and B are obtained by inserting the values
of ω and R derived from Eq. (5) into Eq. (6) and separating real and
imaginary parts.

Next, we apply the master stability formalism (MSF),20 in
order to simplify the analysis of Eq. (7).33 This method consists
of decomposing the perturbation zσ on the basis provided by
the diagonalization of the connectivity matrix C. We denote the
eigenvalues of the connectivity matrix as 31 ≥ 32 ≥ · · · ≥ 3N and

the corresponding eigenvectors as 9
(k) =

(

9
(k)
1 , . . . , 9(k)

N

)T

with

k = 1, . . . , N. Therefore,

C9
(k) = 3k9

(k) . (10)

We now express the perturbation zσ in the basis 9
(k) as

zσ =
N
∑

k=1

uk ⊗ 9(k)
σ , (11)

where uk ∈ C are the coordinates of zσ in the new basis and ⊗ is the
Kronecker product.

Inserting Eq. (11) in the linearization provided by Eq. (6) and
making use of Eq. (10), we derive the following expression:

żσ =
N
∑

k=1

u̇k ⊗ 9(k)
σ

= A

N
∑

k=1

uk ⊗ 9(k)
σ + B

N
∑

κ=1

cσκ

N
∑

k=1

uk ⊗ 9(k)
κ

=
N
∑

k=1

(

Auk ⊗ 9(k)
σ + Buk ⊗

N
∑

κ=1

cσκ9
(k)
κ

)

=
N
∑

k=1

(

Auk ⊗ 9(k)
σ + 3kBuk ⊗ 9(k)

σ

)

=
N
∑

k=1

(A + 3kB) uk ⊗ 9(k)
σ . (12)

Since the eigenvectors 9
(k) are a basis of R

N, linear indepen-
dence provides

u̇k = (A + 3kB) uk . (13)

Therefore, we decomposed the 2N × 2N linear system Eq. (7) into N
two-dimensional linear systems that depend on the eigenvalues 3k.
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The eigenvalues λ
(±)

k of the matrices A + 3kB for k = 1, . . . , N
characterize the stability of the homogeneous solution (5). In fact,
they correspond to the Floquet exponents of the periodic solution
Z = R ei�t. The analytical expression for the eigenvalues reads,

λ
(±)

k = 1 + K cos(α)

(

3k

2
− 1

)

±
{

K232
k cos2(α)

4
+ K3k1 cos(α)

[

tan2(α)(1 − 3k) − 3k

]

+ 12
[(

32
k − 1

)

tan2(α) + 32
k

]

}1/2

. (14)

This corresponds to a dispersion relation analogous to that
in reaction–diffusion systems, with the structural eigenmodes 9

(k)

playing the role of wave functions.

The eigenvalues λ
(±)

k depend explicitly on the parameters of
the system (1, α, and K) as well as on the structural eigenvalues
3k. Using the row-normalization of C and the Gershgorin cir-
cle theorem,34 we can assert that |3k| ≤ 1. Moreover, the largest
structural eigenvalue is 31 = 1, and the corresponding eigenvector
corresponds to a uniform perturbation, i.e.,

9
(1) = 1√

N
(1, . . . , 1)T. (15)

From the expression in Eq. (14), we see that λ
(+)
1 = 0, as it should,

since the homogeneous state is a limit-cycle in a co-rotating frame.
The eigenvalues λk for k > 1 indicate the growth rates of perturba-
tions that are transverse to the homogeneous manifold.

For the case 1 = 0, the expression of the system eigenvalues

simplifies to λ
(+)

k = K cos(α)(3k − 1) and λ
(−)

k = −K cos(α). Since
the coherent state emerges for K cos(α) > 21 = 0, this proves that,
in networks without disorder, the homogeneous state is always sta-
ble, consistent with the fact that chimera states in these systems
always coexist with the fully synchronized solution.9

For 1 > 0, however, the scenario changes. In this case, it is
possible to perform a parameter reduction (see Appendix C). Set-
ting 1 = 1 without loss of generality, we analyze the system for
different values of K and α. Figure 1(a) shows Re[λ(±)] as a func-
tion of 3 for different parameter sets. For the selected values, the
dispersion relation displays a positive region, indicating the exis-
tence of transverse instabilities, which always emerge through real
eigenvalues λ(+) ∈ R.35 Overall, the shape of the dispersion rela-
tion resembles that of the Benjamin–Feir instability in the complex
Ginzburg–Landau equation.36

Setting Re[λ(+)] = 0 in Eq. (14) determines the regions where
transverse instabilities of the homogeneous state arise in parameter
space. Figure 1(b) shows such regions for three different values of
α in the (K, 3)-plane. A small region of instabilities arise already
for α = 1 and widens as α → π/2, the critical value above which
the homogeneous coherent solution vanishes completely. This is
consistent with previous findings showing that chimera and other
symmetry-breaking states emerge only for α close to, but below,
π/22,9,12,37 In particular, Wolfrum et al.37 showed that, in a continu-
ous media with nonlocal coupling, Benjamin–Feir instabilities of the
homogeneous state arise only for values of α between π/4 and π/2.

FIG. 1. Transverse instabilities of homogeneous states in networks of
Kuramoto–Sakaguchi populations Eq. (3). (a) Real part of the eigenvalues
(Floquet exponents) characterizing the stability of the homogeneous solution λ(±)

as a function of the structural matrix eigenvalues 3. Thick and thin curves cor-
respond to λ(+) and λ(−) as given by the master stability function in Eq. (14),
respectively. Green, orange, and purple curves correspond to (K,α) = (5, 1),
(10, 1.2), and (15, 1.4). (b) Color-shaded regions show the regions of transverse
instabilities in the (K,3) plane, with solid lines showing the loci of the bifurcation
[Re[λ(+)] = 0 in Eq. (14)]. Dotted vertical lines indicate the Kuramoto synchro-
nization transition H0 at which the coherent homogeneous solution emerges.
Results shown for α = 1 (red), 1.2 (black), and 1.4 (blue).

Our analysis provides an analogous picture only if 3 is regarded as
continuous. For finite-size network topologies, transverse instabil-
ities depend on the discrete network spectra, and specifically, the
region of instability is determined by the second largest eigenvalue
32 [see Fig. 1(b)]. Figure 2 shows how the region of transverse
instabilities changes with 32 in the (α, K)-plane. For 32 → 1, the
bifurcation diagram approaches that of Kuramoto–Sakaguchi oscil-
lators in a continuous array38 [cf. Fig. 2(b) of Ref. 37]. For 32 < 1,
the instability region becomes smaller and with boundaries detached
from the Kuramoto synchronization transition H0.

In Secs. IV–VI, we study how these bifurcation scenarios
apply to a two-population model, ring networks, and Erdös–Rényi
connectivities. For this analysis, we fix α = 1.2, a value not that
close to the limit case π/2 but still displaying a large instability
region.
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FIG. 2. Bifurcation diagram of networks of Kuramoto–Sakaguchi populations
Eq. (3) with specific 32. Color-shaded areas indicate the regions of transverse
instabilities for different values of the second largest structural eigenvalue 32.
The dashed black curve indicates the Kuramoto synchronization transition H0.

IV. REVIEW OF THE TWO-POPULATION MODEL

As a first example, we revisit the two-population model. Previ-
ous works on this setup showed the emergence of chimera and other
states from a pitchfork bifurcation of the homogeneous synchro-
nized state if 1 > 0.10–13 Here, we show that such bifurcation cor-
responds to a transverse instability provided by Eq. (14) and review
some of the dynamics emerging from this symmetry-breaking. As in
Sec. III, we fix 1 = 1 without loss of generality (see Appendix C).

The connectivity matrix in the two-population model reads

C =
(

µ 1 − µ

1 − µ µ

)

. (16)

where µ ∈ [0, 1] is a parameter controlling the coupling strength
within the population, and 1 − µ corresponds to the coupling
strength across the two populations.

The eigenvalues of this connectivity matrix read 31 = 1 and

32 = 2µ − 1. Substituting 32 in Eq. (14) and setting Re[λ(+)
2 ] = 0

provide an analytical expression for the pitchfork bifurcation of the
homogeneous state as an implicit equation on the system parame-
ters. The solid black curve in Fig. 3(a) shows such bifurcation line in
the (K, µ)-plane, with the color-shaded regions above the line indi-
cating the areas where the homogeneous state is unstable [see also
black curve in Fig. 1(b)]. Within this region, four different states
might exist (apart from the incoherent and coherent homogeneous
states):40

• Steady chimera [pink region in Fig. 3(a)], a fixed point charac-
terized by R1 6= R2.

• Breathing chimera [yellow region in Fig. 3(a)], a limit-cycle
characterized by one population having always a larger degree
of synchrony than the other, i.e., either R1(t) > R2(t) or R2(t)
> R1(t) for all t > 0 [see Fig. 4(a)].

• Symmetric limit-cycle [green and blue regions in Fig. 3(a)],
characterized by R1(t) = R2(t + T/2), where T is the period of
the oscillation [see Fig. 4(b)].

• Antiphase fixed point [blue and purple regions in Fig. 3(a)],
characterized by R1(t) = R2(t) but 81 − 82 = π . A thorough
analysis of this state, including its linear stability, is provided in
Appendix F.

In order to illustrate the emergence and nature of these differ-
ent states, we first fix µ = 0.9 and study the system dynamics upon
increasing K with the help of numerical continuation software.39

The resulting bifurcation diagram is depicted in Figs. 3(b) and 3(c)
and can be split in nine different regions (labelled i-ix) delimited by
different bifurcations:

(i) For K < Kc ≈ 5.52, the incoherent state Zσ = 0 is the only
stable solution. This state loses stability at the Kuramoto syn-
chronization transition H0, leading to the emergence of the
coherent homogeneous state.

(ii) The coherent homogeneous state is the global attractor of the
system from H0 up to K ≈ 6.66, when it loses stability through
the supercritical pitchfork bifurcation (PF+) given by Eq. (14).

(iii) Above PF+, two stable fixed points emerge, corresponding to
steady chimeras [black lines in Fig. 3(b), pink-shaded region].
Although the steady chimeras coexist with the unstable homo-
geneous and antiphase fixed points, they are the sole attractor
in this region of the parameter space.

(iv) At K ≈ 7.37, the steady chimeras undergo a supercritical Hopf
bifurcation (H+) leading to the emergence of two stable limit-
cycles, corresponding to the breathing chimera [red lines in
Fig. 3(b), yellow-shaded region]. Figure 4(a) shows exemplary
time series of this state, and Fig. 4(c) shows the corresponding
phase portrait, with black curves depicting the limit-cycles and
the red curve showing an example of a trajectory.

(v) The breathing chimera limit-cycles eventually collide with the
unstable coherent homogeneous state at K ≈ 7.89, merging
in a single limit-cycle through a double homoclinic bifur-
cation (Dhom., also known as gluing bifurcation11,41,42). The
resulting attractor corresponds to a symmetric limit cycle
in which the two populations alternate the same level of
synchrony half a period apart [red lines in Fig. 3(b), green-
shaded region]. Figure 4(b) shows exemplary time series of
this regime, and Figs. 4(d) and 4(e) depict two phase portraits,
with K in panel (d) very close to the gluing bifurcation.

(vi) At K ≈ 9.19, the antiphase state of the system, which is unsta-
ble for smaller values of K, becomes stable through a subcrit-
ical Hopf bifurcation (H-, see Appendix F). Therefore, in this
region of the bifurcation diagram, there is bistability between
the antiphase state and the symmetric limit-cycle [black and
red lines in Fig. 3(b), blue-shaded region]. Figure 4(f) shows
the phase portrait of this bistable regime, with the unstable
limit-cycle represented by a gray curve.

(vii) The symmetric limit-cycle collides with the unstable limit-
cycle at K ≈ 9.41, thus both solutions vanish through a
saddle-node of limit-cycles (SNLC). Then, the antiphase state
becomes the only attractor for a wide region of the param-
eter space [black curve in Figs. 3(b) and 3(c), purple-shaded
region].

(viii) At K ≈ 15.67, the homogeneous fixed point recovers stabil-
ity through the (subcritical) pitchfork bifurcation provided
by Eq. (14) [see PF- in Fig. 3(c)]. Therefore, in this region,
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FIG. 3. Bifurcation diagrams of the two population model [Eq. (3) with Eq. (16)] for α = 1.2 and 1 = 1. (a) Two-parameter bifurcation diagram. Solid lines indicate super-
critical bifurcations (+) and dashed lines indicate subcritical bifurcations (−). Black curves correspond to the pitchfork bifurcation (PF) of the homogeneous state [given
by Eq. (14)], red curves indicate Hopf bifurcations (H), green curves indicate double homoclinic (DHom.) and heteroclinic (Het.) bifurcations, the blue curve indicates a
saddle-node bifurcation (SN), and the purple curve indicates a saddle-node of limit-cycles (SNLC). Straight dotted thin line indicates the Kuramoto synchronization transition
(H0). Color-shaded regions indicate instability of the homogeneous solution, with each color corresponding to a different attractor set: Pink for stable steady chimeras, yellow
for breathing chimeras, green for symmetric oscillations, blue for bistability between symmetric oscillations and antiphase state, and purple for stability of the antiphase fixed
point only. (b) and (c) One-parameter bifurcation diagram for µ = 0.9. Solid curves with different colors indicate different attractor types: Black for stable fixed points, gray
for unstable fixed points, red for stable limit-cycles, and light red for unstable limit-cycles. Relevant bifurcations are labelled on the top of the figures, with the different regions
between bifurcations shaded with the same color scheme as in panel (a). Homogeneous and antiphase solutions together with their corresponding bifurcations (H0,PF,H-)
have been obtained analytically. All other results have been obtained with auto-07p39 (see Appendix B).

both homogeneous and antiphase states share stability [black
curves in Fig. 3(c)].

(ix) Finally, the unstable fixed points emerging from PF- collide
with the antiphase solution at a new subcritical pitchfork
bifurcation (PF’-) at K ≈ 33.69 (see Appendix F for an ana-
lytical derivation of PF’-). From this point on, further increase
in K does not lead to any other bifurcation, and the homoge-
neous state remains the only (global) attractor of the system
[black curve in Fig. 3(c)].

The two-parameter bifurcation diagram in Fig. 3(a) shows that
the bifurcation scenario we have described for µ = 0.9 holds for
the entire region of instability of the homogeneous state. The dia-
gram also shows the loci of a saddle node bifurcation (SN) that
joins the pitchfork bifurcation (PF) at a fold-pitchfork codimension-
2 bifurcation (SN-PF). At this codimension 2 point, the symmetry
breaking bifurcation turns from supercritical to subcritical.10,12 This
SN branch limits a region of bistability between the homogeneous
fixed point and stable chimeras. Within this region, following a
route similar to the one described before, the stable chimera turns
into a breathing state at the supercritical Hopf (H+). Nonetheless, in
this case, the gluing bifurcation leads to the disappearance of limit-
cycle solutions since the homogeneous state is stable. Finally, there is
an additional region of bistability between the symmetric limit cycle

and the homogeneous state bounded by a heteroclinic bifurcation
and the saddle-node of limit cycles (SNLC).

Altogether, this analysis reveals a rich dynamical landscape
emerging from the pitchfork bifurcation that breaks the symmetry
of the homogeneous state. These results complement those pre-
sented in previous works for the same system10–13 but without relying
on weak heterogeneity. Moreover, the pitchfork bifurcation of the
homogeneous state (PF) and the bifurcations from the antiphase
state (H- and PF’-) have been obtained analytically as implicit
equations on the system parameters.

V. RING TOPOLOGY

Now, we consider a ring network composed of N > 2 pop-
ulations connected via nearest neighbors. The connectivity matrix
C = (cσκ) reads

cσκ =



















µ if σ = κ

1 − µ

2
if |σ − κ| = 1 or N − 1

0 otherwise .

(17)

This scenario was studied by Lee et al.18 for the case of N = 6
oscillators, where they unveiled different forms of stable and (non-
chaotic) breathing chimera states for heterogeneous populations.
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FIG. 4. Oscillatory dynamics in the two-population Kuramoto model [Eq. (3) with Eq. (16)] for µ = 0.9, α = 1.2, and 1 = 1. (a) and (b) Time series of the Kuramoto order
parameters and phase difference of the two populations at a breathing chimera state [panel (a), K = 7.7] and symmetric limit-cycle [panel (b), K = 8]. (c)–(f) Phase portraits
for different values of K showing breathing chimera [panel (c)], the symmetric limit-cycle [panels (d) and (e)], and bistability between the antiphase state and the symmetric
limit-cycle [panel (f)]. Bold black curves show the stable limit-cycles and red curves show an exemplary trajectory. Gray curve in panel (f) shows the unstable limit-cycle. Open
symbols correspond to the different unstable fixed points: square (�) indicates the homogeneous state and circles (◦) indicate the two steady chimera states. Blue-colored
diamond (�) in panel (f) indicates the stable antiphase state.

Also, Laing19 analyzed a similar ring model but with non-local cou-
pling, which displayed chaotic solutions that vanish upon increasing
system size. Here, we show that, in our setup, transverse instabili-
ties of the homogeneous state lead to chaotic dynamics that show
an extensive character with N, i.e., the dynamical complexity of the
system scales linearly with the system size.

Since C is a circulant matrix, its eigenvalues have a simple
expression. In order to preserve the ordering from larger to smaller,
we write them as

3k =











µ + (1 − µ) cos
(π

N
(k − 1)

)

if k is odd,

µ + (1 − µ) cos
(π

N
k
)

if k is even,
(18)

for k = 1, . . . , N. The corresponding eigenvectors are the discrete
Fourier modes

9
(k)
j =



































e

π j

N
(k−1)i

√
N

if k is odd,

e
−
π j

N
ki

√
N

if k is even,

(19)

where k = 1, . . . , N.

As N increases, the second largest structural eigenvalue 32

tends to 1. Therefore, from Figs. 1(b) and 2, we infer that the
region of transverse instability expands with N. Figure 5(a) illus-
trates this situation: Thick continuous curves depict the bifurcation
obtained in the (K, µ)-plane by setting Re[λ(+)] = 0 in Eq. (14).
As N increases, the region of instability becomes larger, covering
a wideband of K values irrespective of µ if N is sufficiently large.
Moreover, the emergence of instabilities occurs arbitrarily close to
the Kuramoto synchronization transition [H0, vertical black dashed
line in Fig. 5(a)].

Another important aspect of the ring spectrum in Eq. (18)
is that it is delocalized, i.e., it covers the interval 3k ∈ [2µ − 1, 1]
densely as N → ∞. Therefore, several structural eigenmodes 3k

might concurrently correspond to different unstable directions. For
instance, the colored region in Fig. 5(b) shows the number of unsta-
ble directions of the homogeneous state in the (K, µ)-plane for
N = 128. The number of positive growth rates generally increases

with µ, with a large region (dark blue) where all λ
(+)

k > 0 for k > 1.
In fact, this region coincides with the region of transverse instability
for the two-population model, since the last mode turning unstable
corresponds to 3N = 2µ − 1.

The regularity of ring topologies also allows for the exis-
tence of twisted states,18,43 i.e., traveling wave solutions of the form

Zσ = R̃ e�̃t+ 2π
N qσ where q ∈ Z is the winding number. These states
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FIG. 5. Transverse instabilities of the homogeneous and antiphase state in ring
networks (α = 1.2 and 1 = 1). (a) Regions contained within the thick lines
correspond to transverse instabilities of the homogeneous state for different N.
Regions contained within the thin curves indicate stability of the antiphase state.
(b) Color-shaded regions show the number of unstable modes of the homo-
geneous state for a network of N = 128 populations. Red curve encloses the
region of stability of the antiphase state. Vertical black dashed line indicates the
Kuramoto synchronization (H0) transition in both panels.

have been studied in the context of the Kuramoto model in spa-
tially extended arrays with nonlocal coupling37,43 and also networks
of populations,18 where they have shown to play a major role on
the emergence of nontrivial dynamics. For our particular choice of
nearest neighbor coupling, twisted states emerge but do not seem
to play a prominent role on the emergence of complex dynamics.
In Appendix E, we provide a detailed discussion of these states,
including linear stability and bifurcation diagrams. Altogether, we
find that, for our choice of C, most twisted states are stable only
for large K, for which the homogeneous state is already stable (see
Fig. 10). The only exception to this picture are twisted states with
winding number q = N/2 (i.e., antiphase states) and q = N/3, pro-
vided they exist. Thin lines in Fig. 5(a) and the red line in Fig. 5(b)
delimit the region of stable antiphase dynamics in ring networks
of different sizes. Although this region shrinks by increasing N, it
does not vanish and intersects a significant portion of the region of
transverse instabilities of the homogeneous state (see Appendix F
for a simplified linear stability analysis for antiphase states in ring
networks).

Overall, in large ring networks, we expect to have complex
dynamics in wide regions of parameter space due to the expan-
sion of the transverse instability region and the number of unstable
directions of the homogeneous state. Figure 6 shows two instances
of these complex dynamics for N = 128. Panel (a) depicts Rσ and
8σ of each population over time for parameters in the region
where the number of unstable directions of the homogeneous state
is maximal (K = 7, µ = 0.9). The dynamics of Rσ are rather dis-
ordered, with φσ showing some indications of spatial structure.
Instead, panel (b) corresponds to parameters associated with less
unstable directions (K = 15, µ = 0.5). In this case, the dynamics
of both Rσ and 8σ evolve more regularly, in spite of their seem-
ingly chaotic behavior. These qualitative observations posit the exis-
tence of space–time chaos emerging from the transverse instabilities
reported here. In the rest of this section, we assess the chaotic and
complex behavior of the system by means of numerical Lyapunov
analysis. Appendix A contains precise definitions of the monitored
quantities.

FIG. 6. Chaotic dynamics of the ring model for different parameter values (α = 1.2 and 1 = 1). (a) Kuramoto order parameter of each population Rσ and corresponding
phase 8σ for K = 7 and µ = 0.9 after a transient of 1000 time units. (b) Same quantities for K = 15 and µ = 0.5.
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FIG. 7. Simulations of ring (columns 1 and 2) and Erdös–Rényi (column 3) networks with N = 128 (α = 1.2 and1 = 1). (a) Red circles indicate time average mean activity
〈R〉, with the red-shaded region showing the corresponding level of heterogeneity 〈R〉 ± 〈S〉. Gray curves correspond to the value of R for the homogeneous states given
by Eq. (5). In panel (a1), an additional gray curve shows the antiphase state [Eq. (F2)]. (b) 20 largest Lyapunov exponents `σ . (c) Kaplan–Yorke fractal dimension computed
using the (complete) Lyapunov spectra as given by Eq. (A3). (d) Kolmogorov–Sinai dynamical entropy computed from Eq. (A4). In all panels, vertical dashed lines indicate
the emergence and disappearance of transverse instabilities as given by Eq. (14). Dotted vertical line in panels (a1)–(d1) indicates the emergence of stable antiphase state
as given by Eq. (F8).

First, we focus on a fixed network size (N = 128) and study
the dynamics by varying K. Figures 7(a1)–7(d1) show the numeri-
cal results obtained with fixed µ = 0.9, thus covering the region of
maximal number of unstabilities. The red circles in Fig. 7(a1) show
the time average of the network’s mean Kuramoto order parameter,
R. The shaded region shows the corresponding standard deviation
S (see Appendix A for specific definitions). The gray continuous
lines indicate the value of R corresponding to the homogeneous
and antiphase states [Eqs. (5) and (F2)]. As predicted, the nontrivial
dynamics emerge just after the Kuramoto transition to synchrony
H0 and appear to be the only attracting state until the stabilization
of the antiphase state (see dotted vertical lines).

To characterize the complexity of these non-trivial states,
Fig. 7(b1) displays the 20 largest Lyapunov exponents `σ of the net-
work. At the transverse instability, many exponents become positive
at once, thus indicating the emergence of high-dimensional chaotic
dynamics. Indeed, the Kaplan–Yorke formula [Fig. 7(c1)] indicates a
fractal dimension with aboutDKY ≈ 28 degrees of freedom just after
the transition. The attractor dimension increases smoothly until it
reaches a maximum of DKY ≈ 200 and then slowly decreases until
vanishing at the stabilization of the antiphase state. Similarly, the
Kolmogorov–Sinai dynamical entropy hKS [Fig. 7(d1)] also increases
starting at the transverse instability, albeit it does so less abruptly.
This measure indicates that the maximum complexity of the trajec-
tories is reached around K ≈ 7.5. Altogether, these results establish
the existence of high-dimensional chaos arising from the transverse
instabilities of the homogeneous state for µ = 0.9.

Next, we switch to µ = 0.5, for which the homogeneous state
has fewer unstable directions. Moreover, the antiphase state does
not exist for this value of µ, and therefore, we expect non-trivial
dynamics for a larger K-range (note the difference in the x-axis range

between columns 1 and 2 in Fig. 7). Figures 7(a2)–7(d2) show that
the scenario starts off analogously to that of µ = 0.9: At the trans-
verse instability (see vertical dotted line), the system transitions from
incoherence to a state with a large degree of heterogeneity. Also,
several Lyapunov exponents become positive at once, resulting into
both DKY and hKS increasing rapidly. Again, this corresponds to a
case of space–time chaos.

Around K ≈ 15.8 a transition occurs and the irregularity of the
system drops drastically. The dynamics emerging from this bifur-
cation, which is not detected by our theory, proved challenging to
characterize. First, the system suddenly evolves very close to the
homogeneous state. In fact, our measure of network heterogene-
ity S is too small to be visually appreciated above the transition in
Fig. 7(a2) (see pink shaded region). Nonetheless, a close inspection
of the simulations (not shown) revealed irregular patterns in both Rσ

and 8σ . Second, such spatiotemporal dynamics evolve slowly com-
pared to the states encountered so far, requiring longer simulations
(see Appendix B). Such slow time scales are mainly reflected by the
magnitude of the positive Lyapunov exponents in Fig. 7(b2) and the
drop on dynamical entropy shown in Fig. 7(d2). In spite of these
peculiarities, the number of positive Lyapunov exponents and thus
the value of DKY for 15.8 . K . 21 [see Fig. 7(c3)] indicate that this
corresponds to a high-dimensional chaotic regime.44 Finally, around
K ≈ 21.6, the dynamics fall back to the homogeneous state, as pre-
dicted by the stability analysis (second vertical dashed line in the
middle-row panels of Fig. 7).

So far, the numerical exploration for µ = 0.9 and µ = 0.5
proved the existence of highly complex spatiotemporal regimes
emerging from transverse instabilities of the homogeneous state in
rings of N = 128 populations. Next, we test the robustness and scal-
ing these results upon varying the system size N. Figure 8 shows
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FIG. 8. Extensivity of chaos in ring and Erdös–Rényi (ER) networks (α = 1.2 and 1 = 1). (a) Complete Lyapunov spectra for different network sizes for the simulations
of the ring and ER networks. For each parameter set, dots indicate the results for networks with N = 64, 128, 256, 512, and 1024 populations. Nonetheless, in most cases,
differences across system sizes are barely visible. (b) and (c) Fractal dimension DKY (panel b) and dynamical entropy hKS (panel c) computed for different system sizes N
in three different simulation setups. Circles correspond to numerical simulations. Dashed lines correspond to a linear regression. In all these plots, red corresponds to ring
networks with K = 7 and µ = 0.9, blue corresponds to ring networks with K = 15 and µ = 0.5, and green corresponds to ER networks with K = 14 and µ = 0.9.

results from simulations of rings composed of an increasing num-
ber N of oscillators (red and blue symbols) for selected parameter
values. Panel (a) shows the Lyapunov spectra computed for dif-
ferent system sizes with node index normalized by the system size
σ/(2N). For the tested parameter values ((K, µ) = (7, 0.9), red sym-
bols, and (15, 0.5), blue symbols), the spectra show a good collapse
upon increasing N, i.e., the Lyapunov exponents converge to a well-
defined profile, with the only exception of the smaller networks for
the second set (blue dots). These robust spectra for increasing N
indicate extensive chaos, i.e., a chaotic regime whose complexity
scales linearly with the system size. To further explore this possi-
bility, Figs. 8(b) and 8(c) show the computed fractal dimension and
dynamical entropy for the same parameter values upon increasing
N. In all cases, an accurate scalingDKY ∝ N and hKS ∝ N is observed.

Overall, these numerical results indicate that transverse insta-
bilities of a homogeneous state lead to extensive chaos in ring
networks of oscillator populations with nearest neighbor coupling.
In the next section, we investigate the case of irregular topologies.

VI. ERDÖS–RÉNYI NETWORKS

Here, we discuss the dynamics that emerge in irregular network
topologies. In order to simplify the analysis, we restrict ourselves on
connectivities derived from Erdös–Rényi (ER) networks with fixed

average degree d = 10. Let A = (aσκ) be the adjacency matrix of
an (undirected) Erdös–Rényi network (i.e., aσκ ∈ {1, 0}). Then, we
consider a connectivity matrix C = (cσκ) given by

cσκ =







µ if σ = κ

1 − µ

dσ

aσκ if σ 6= κ ,
(20)

where dσ is the degree of node σ in the Erdös–Rényi model. This
connectivity preserves row-normalization, as required for the exis-
tence of homogeneous states, as well as introduces the self-coupling
strength parameter µ.

Unlike the ring scenario, we are unaware of explicit analytical
results on the spectra of C (which does not need to coincide with the
spectra of the adjacency matrix A). However, combining analytical
arguments with a numerical exploration, we can provide an accurate
estimation of the region of transverse instabilities. By the Gershgorin
circle theorem,34 the eigenvalues of C are contained in the interval
3k ∈ [1, 2µ − 1]. Therefore, based on Fig. 1(b), transverse instabil-
ities of the homogeneous state will occur. The shape of the region

will depend on the second largest eigenvalue 32. If 3̃ is an eigen-

value of the matrix D−1A = (aσκ/dσ ), then 3 = µ + (1 − µ)3̃ is
an eigenvalue of C. Averages over 100 simulated networks with dif-

ferent sizes (not shown) indicate that 3̃ are densely distributed in

the interval [-0.6, 0.6]. In particular, 3̃2 ≈ 0.6 as N increases, and
therefore, 32 ≈ 0.4µ + 0.6. Using this approximation in the MSF,

FIG. 9. Approximated region of transverse instabilities of the homogeneous

state in Erdös–Rënyi networks with average degree d = 10. The gray-shaded

region indicates where at least one mode is unstable (i.e., Re[λ
(+)

2 ] > 0).
The purple-shaded region indicates where N − 1 modes are unstable. The
vertical dashed line indicates the Kuramoto synchronization transition H0.
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Eq. (14), provides the region of transverse instabilities for ER net-
works in the (K, µ) parameter space. The gray-shadowed region in
Fig. 9 shows the area where at least one mode of the homogeneous
state is unstable. Also in this case, the number of unstable directions
in the region increases with N, with the purple region in Fig. 9 indi-
cating the parameter values for which the homogeneous state has a
maximum number of unstable modes (N − 1).

In order to capture the emergent dynamics, Figs. 7(a3)–7(d3)
display the results of simulations performed with fixed µ = 0.9 and
different values of K for an ER network of N = 128 populations. As
in the ring networks, the numerical outcome shows a scenario of
consistent high-dimensional chaos for most of the transverse insta-
bility region (indicated by vertical dashed lines). Interestingly, two
different types of complex dynamics seem to emerge: First, the level
of heterogeneity captured by S shows a region of high dynamical
variety among nodes [see red-shaded region in Fig. 7(a3), 6 . K
. 8]. In this case, the Lyapunov spectra show many exponents with
similar positive values (panel b3), which translate into a very high
Kaplan–Yorke dimension (panel c3) and dynamical entropy (panel
d4). At K ≈ 8, all measures show a significant reduction of com-
plexity, indicating a transition to a different chaotic regime from
8 . K . 20. In this case, the patterns lose heterogeneity, but the
Lyapunov spectra still show a regime of high-dimensional chaos. In
fact, the number and value of the largest exponents increase mono-
tonically with K, leading to an equally gradual increase of DKY and
hKS until the homogeneous state becomes stable again (at K ≈ 20).

As in the ring model, we now test the robustness of the chaotic
dynamics upon increasing network size. The green dots in Fig. 8(a)
show the entire Lyapunov spectra for K = 15 and µ = 0.9 upon
increasing system size. Overall, the different spectra collapse to a
single well-defined curve. Moreover, the green symbols in Figs. 8(b)
and 8(c) indicate that both the fractal dimension and the dynami-
cal entropy increase linearly with N, confirming thus the extensive
nature of the chaotic regime in ER topologies.

VII. CONCLUSIONS

Recent works have studied the dynamics of networks of
identical Kuramoto–Sakaguchi populations by means of the
Ott–Antonsen equations under different parameter setups, coupling
schemes, and system sizes.7,9–11,15–18,45 This paper provides a leap
forward in these efforts by providing a general expression for the
instabilities of the homogeneous state as a function of the eigen-
modes of the structural connectivity matrix. We proved that, in net-
works without disorder (1 = 0), the homogeneous state is always
transversally stable regardless of the topology. On the other hand,
for disordered populations (1 > 0), transverse instabilities occur.
These instabilities, which lead to chimera states in two-population
networks,10,12,13 give rise to extensive chaos in large nearest-neighbor
ring and random connectivity schemes.

The emergence of extensive chaos in ring networks could
apparently conflict with the findings of Laing,19 which studied a
similar setup but with non-local connectivity via a discrete kernel.
In their work, the row-normalization of the connectivity matrix is
preserved; thus, our theoretical framework also applies. The eigen-
values of their connectivity matrix can be analytically computed,
and we found they are all zero except for three: 31 = 1, 32 = 33 >

0. In particular, limN→∞ 32 = B/2 where B = 0.35. This localized
spectrum differs largely from the spectra of nearest neighbor ring
topologies given by Eq. (18), which covers the interval [2µ − 1, 1]
densely for large N. Although a more in-detail comparison between
both setups is out of the scope of this paper, it is likely that the trans-
verse instabilities reported in Ref. 19 only occur through 32 and 33,
rather than through several concurrently unstable eigenmodes. This
might explain the disappearance of chaos for large networks in that
setup.

These differences between non-local and local interactions in
rings indicate that network topology and, specifically, their spectra,
play an important role on the properties of the resulting dynamical
states. Here, we restricted ourselves on simple structures, with-
out an in-depth analysis of how specific topological features affect
the emergent behavior. Future work should analyze the effect of
varying network density in both ring and Erdös–Rényi networks
and the impact of other topologies such as scale-free or small
world.

On a different note, the extensive nature of the chaotic states
and the patterns displayed in ring networks are an indication that
this form of space–time chaos could correspond to a turbulent
state. Interestingly, the dependence of the growth rates on the struc-
tural eigenmodes depicted in Fig. 1(a) resembles that of the Ben-
jamin–Feir instability in the complex Ginzburg–Landau equation.46

Similar turbulent states have been studied in arrays of individual
Kuramoto–Sakaguchi oscillators with non-local coupling.37,47,48 Fur-
ther analysis should, thus, address to what extent the properties
of our setup for increasing N match those of phase or amplitude
turbulence in spatially extended systems.36

Here, we have studied the dynamics of the Kuramoto–
Sakaguchi populations at the thermodynamic limit via the
Ott–Antonsen equations. The global attractiveness of this low-
dimensional manifold for 1 > 0 has been recently proven,32

strengthening the validity of this approach to study networks
of Kuramoto–Sakaguchi populations. Nonetheless, previous works
have shown that (low-dimensional) chaotic dynamics in the
Ott–Antonsen equations might display different properties in finite-
size simulations.11 A detailed comparison of simulations of the
microscopic system (1) with finite M, and those of the Ott–Antonsen
description Eq. (3), could provide valuable insights into under-
standing the convergence of Kuramoto–Sakaguchi ensembles to the
low-dimensional manifold. Nonetheless, such study would require
a considerable computational effort due to the large number of
degrees of freedom involved.

Finally, although our study does not stem from any par-
ticular physical setup, the Kuramoto–Sakaguchi model success-
fully describes a wide variety of real-world phenomena, includ-
ing power grids,49 circadian rhythms,50 and bacterial biofilms.51

A particularly explored application is neural dynamics, where the
Kuramoto–Sakaguchi model has been rigorously derived from spik-
ing neuron models.52 In this context, the mean-field description
provided by the Ott–Antonsen equations leads to a simplified
neural mass model.7 Thus, our analysis of the coupled system
Eq. (3) provides a simple, yet grounded, framework to analyze
whole brain dynamics where each brain region is represented by
a Kuramoto–Sakaguchi population. In fact, the study of transverse
instabilities in whole brain models is a powerful tool to unveil the
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multiscale dynamics of these systems, even when the single-node
dynamics evolve according to generic neural mass models.53
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APPENDIX A: MEASURES OF COLLECTIVE ACTIVITY

Here, we describe the different quantitative measures employed
to characterize the dynamics emerging from transverse instabilities
in large networks of oscillator populations.

• To capture the macroscopic behavior of the system, we compute
the mean Kuramoto order parameter,

R(t) := 1

N

N
∑

σ=1

Rσ (t), (A1)

and its instantaneous standard deviation on the network

S(t) = 1√
N

{

N
∑

σ=1

[Rσ (t) − R(t)]2

}
1
2

. (A2)

If the network is at a heterogeneous state (in Rσ ), then S > 0.

• The chaotic activity of a system can be characterized by
the corresponding Lyapunov exponents54,55 which we denote
by `σ , where `1 ≥ `2 ≥ · · · ≥ `N. We compute the Lyapunov
exponents using the standard dynamical algorithm based on
QR-decomposition.55,56 In particular, simulations have been
performed using the DynamicalSystems.jl Julia package57 (see
Appendix B for more details on numerical simulations).

• The fractal dimension of a chaotic attractor can be approxi-
mated using the Kaplan–Yorke formula,58 given by

DKY = j +
∑j

i=1 `i

|`j+1|
, (A3)

where j is such that
∑j

i=1 `i ≥ 0 but
∑j+1

i1
`i < 0.

• Another measure of dynamical complexity is the Kol-
mogorov–Sinai dynamical entropy hKS, which measures the
growth rate of distinguishable trajectories in phase space.55,59

Following Pesin’s formula, hKS can be computed as the sum of
all positive Lyapunov exponents,

hKS =
n
∑

i=1

`i, (A4)

where n is such that `n ≥ 0 and `n+1 < 0.

APPENDIX B: NUMERICAL SIMULATIONS AND
NUMERICAL CONTINUATION

The code used in this paper is openly available in Ref. 60 (also
accessible through https://github.com/pclus/KuramotoPopulation
Network). Simulations of the model and computation of Lyapunov
exponents have been performed in Julia via the DynamicalSys-
tems.jl package.57 In particular, we have employed the Runge–Kutta
4 algorithm with a fixed time step of dt = 10−2.

Simulations of the system employed an initial transient evo-
lution of 6000 time units. This is a conservative transient time
set to achieve a good convergence near the bifurcations, but for
most parameter values shorter transients provide the same results.
After this transient, we simulate both phase space and tangent space
dynamics for the computation of the Lyapunov exponents. The tan-
gent space is initially evolved for 200 time units, after which we
start computing all the Lyapunov exponents for a total of 1000
time units. The QR decomposition for computation of the spectra
is invoked at every time unit (i.e., 1/dt time steps). The computation
of the Kaplan–Yorke formula requires a tolerance to discern zero
and non-zero exponents, which we set to 10−4.

The results depicted in Figs. 7(a2)–7(d2) require longer com-
putation times due to the existence of the slow chaotic regime. In
that case, the integration time step was chosen to be dt = 10−1, the
transient in tangent space consisted of 104 time units, and the Lya-
punov exponents were computed for 3 × 104 time units with the QR
decomposition at every 10 time units. Also in this case, we lowered
the tolerance for the Kaplan–Yorke formula to 2 × 10−5.

Simulations of the ring network for µ = 0.9 were initialized at
the antiphase state with an additional small random perturbation.
This prevents the system from stalling into a long chaotic tran-
sient in the region where the antiphase state is stable. For all other
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cases, since the antiphase state does not exist or is unstable, simula-
tions were initialized at the homogeneous state with a random small
perturbation.

The bifurcation diagrams of Fig. 3 were partially obtained with
the numerical continuation software auto-07p.39 In order to sim-
plify the analysis, the two-population model with the connectivity
matrix (16) was rewritten as a three-dimensional system in real
space by considering the polar representation of the Kuramoto com-
plex parameters Z1 = R1 ei81 and Z2 = R2 ei82 and defining a new
variable 2 = 81 − 82. Then, Eq. (3) reads

Ṙ1 = −1R1 + K

(

1 − R2
1

2

)

[µR1 cos (α) + (1 − µ)R2 cos (2 − α)]

Ṙ2 = −1R2 + K

(

1 − R2
2

2

)

[µR2 cos (α) + (1 − µ)R1 cos (2 + α)]

(B1)

2̇ = K

(

1 + R2
1

2R1

)

[µR1 sin(α) − (1 − µ)R2 sin(2 − α)]

− K

(

1 + R2
2

2R2

)

[µR2 sin(α) + (1 − µ)R1 sin(2 + α)] .

A tutorial guide to obtain some of the bifurcations using the numer-
ical continuation capabilities of auto-07p is openly available in the
published repository.60

APPENDIX C: PARAMETER REDUCTION

System (3) contains three parameters: 1, K, and α. It is possi-
ble to rescale this system in order to reduce the parameter number
to two. Some works10,12,13 consider systems in which time is rescaled
as t̃ = Kt so that the coupling strength K can be removed from
the equations or, equivalently, let it constant as K = 1. In this case,
Eq. (3) reads

dZσ

dt̃
= −DZσ + 1

2

N
∑

κ=1

cσκ

(

Zκ e−iα − Z2
σ Z∗

κ eiα
)

, (C1)

where D = 1/K and K > 0.
Another option is to rescale time as t̃ = 1t, such that (3) reads

dZσ

dt̃
= −Zσ + K̃

2

N
∑

κ=1

cσκ

(

Zκ e−iα − Z2
σ Z∗

κ eiα
)

, (C2)

with K̃ = K/1 and 1 > 0. This would be equivalent to let 1 = 1
fixed in the equations.

In this work, we choose not to rescale any parameter in the
system, so the analysis remains valid in the limit cases 1 = 0 and
K = 0. Nonetheless, we are mostly interested in the heterogeneous
case (1 > 0); thus, we let 1 = 1 without loss of generality. There-
fore, in the two-population model, the equivalence between the
formulation of previous studies10–13 and that given in Eq. (3) with
1 = 1 is simply D = 1/K.

APPENDIX D: TRANSVERSE INSTABILITIES OF THE
INCOHERENT STATE

Here study the transverse instabilities of the incoherent homo-
geneous state Zσ = 0 for σ = 1, . . . , N. Our aim is to show that

transverse instabilities do not arise when this state is stable, i.e.,
when 0 < K cos(α) < 21. Without loss of generality, we impose
ω = 0. Then, by linearizing Eq. (3) around the incoherent solution
(Zσ = 0), we obtain

żσ = −1zσ + K

2

M
∑

κ=1

cσκzκ e−iα = A(0)zσ + B(0)

N
∑

κ=1

cσκzκ , (D1)

where

A(0) =
(

−1 0
0 −1

)

(D2)

and

B(0) = K

2

(

cos(α) sin(α)

− sin(α) cos(α)

)

. (D3)

Following again the master stability formalism presented in
Sec. III, the stability of this solution is controlled by the eigenvalues

λ
(±)

k of the matrices,

M(0)
k = A(0) + 3kB

(0) for k = 1, . . . , N. (D4)

Now, instead of finding a general expression for the eigenvalues, it
is enough to see that

Tr
(

M(0)
k

)

= λ
(+)

k + λ
(−)

k = 3kK cos(α) − 21 . (D5)

The incoherent solution Z(0) is stable within the homogeneous
manifold Eq. (4) if and only if K cos(α) < 21. In this case, since

−1 ≤ 3k ≤ 1 and 1 > 0, we have that Tr(M(0)
k ) < 0. Therefore,

transverse instabilities of the incoherent state may emerge only if
this state is already unstable to the homogeneous perturbation.

APPENDIX E: TWISTED STATES IN RING NETWORKS

The ring topology given by Eq. (17) allows for the existence
of twisted states. Twisted states are a particular case of traveling
wave solution in which all populations share the same level of syn-
chronization, Rσ = R̃, but with different collective phases 8σ . In
particular, we are interested on studying solutions of the type

Zσ = R̃ ei(�̃t+βσ), (E1)

where β = 2πq/N, with q being the winding number of the traveling
wave. For q = 0, we recover the homogeneous solution studied in
the paper, whereas for q = N/2, we obtain the antiphase state.

Inserting the expression in Eq. (E1) into the system Eq. (3), we
obtain

R̃ =
√

1 − 21

K0 cos(α)
, (E2)

�̃ = ω − tan(α)[K0 cos(α) − 1], (E3)

where 0 = µ + (1 − µ) cos(β). Notice that the existence region of
these states is delimited by K0 cos(α) − 21 = 0.

We can perform linear stability analysis of these family of solu-

tions following a similar reasoning as for the homogeneous state

but with a few changes. Choosing ω = tan(α)[K0 cos(α) − 1] such
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that �̃ = 0, the linear evolution of an arbitrary perturbation of a

twisted state reads

żσ =
(

−1+ iω − K0R̃2 eiα
)

zσ + K

2

M
∑

κ=1

cσκ

[

zκ e−iα − R̃2 ei(2βσ+α)z∗
κ

]

.

(E4)

Without loss of generality, we perform the change of variables
ζσ = zσ e−iβσ , thus

ζ̇σ =
[

−1 + iω − K0R̃2 eiα + Kµ

2
e−iα

]

ζσ − Kµ

2
R̃2 eiαζ ∗

σ

+ K

2

{

1 − µ

2

[

ei(β−α)ζσ+1 − R̃2 e−i(β−α)ζ ∗
σ+1

]

+1 − µ

2

[

e−i(β+α)ζσ−1 − R̃2 ei(β+α)ζ ∗
σ−1

]

}

, (E5)

where we have made explicit the coupling terms cσκ . As in the
analysis of homogeneous states, we simplify the expressions writing
the complex quantities in matricial form. Additionally, we include
the coupling terms for the nearest neighbors as two new coupling
matrices, C(1) and C(2) with elements given by

c(1)
σκ = 1 − µ

2
δσ ,κ−1 and c(2)

σκ = 1 − µ

2
δσ ,κ+1, (E6)

where δσ ,κ is the Kronecker delta. Then, the evolution of the pertur-
bation reads

ζ̇σ = Ãζσ +
N
∑

κ=1

(

c(1)
σκ B̃(1) + c(2)

σκ B̃(2)
)

ζσκ , (E7)

where

Ã =







1

(

1 + µ

0

)

− K0 cos(α) 1 tan(α)

(µ

0
− 1

)

1 tan(α)

(µ

0
+ 1

)

− µK sin(α) 1

(

1 − µ

0

)

+ (µ − 0)K cos(α)






, (E8)

B̃(1) =









cos(β − α)1

cos(α)0
− sin(β − α)1

cos(α)0

sin(β − α)

(

K − 1

0 cos(α)

)

cos(β − α)

(

K − 1

0 cos(α)

)









, (E9)

and

B̃(2) =









cos(β + α)1

cos(α)0
− sin(β + α)1

cos(α)0

sin(β + α)

(

K − 1

0 cos(α)

)

cos(β + α)

(

K − 1

0 cos(α)

)









. (E10)

Now, notice that matrices C(1) and C(2) are circulant, thus shar-
ing the same eigenvectors. Therefore, we can write the perturbation
ζσ in the basis provided by these eigenvectors and, following the
same arguments as for the homogeneous state, we finally obtain
that the eigenvalues controlling the stability of the twisted state
with parameter β correspond to the 2N eigenvalues of the family
of matrices,

Ã + 3̃
(1)
k B̃(1) + 3

(2)
k B̃(2), (E11)

for k = 1, . . . , N, where

3
(1)
k = 1 − µ

2
e−i 2πk

N and 3
(2)
k = 1 − µ

2
ei 2πk

N (E12)

are the eigenvalues of C(1) and C(2), respectively.
Figures 10(a) and 10(b) show a bifurcation diagram of twisted

states for ring networks composed of N = 24 and N = 128 pop-
ulations, respectively. Different colored lines indicate the stability
boundaries of twisted states with winding number q. The gray-
shaded area shows the parameter region where no twisted state is
stable. In both figures, the homogeneous solution (q = 0) is the state

with a larger stability region. Most other twisted states become sta-
ble only for high values of K, for which there exist different forms
of multistability between these planar wave solutions. The excep-
tions are the antiphase state (q = N/2) and the three-cluster state in
Fig. 10(b) (q = N/3 = 8), which are stable in regions where no other
twisted states exhibit stability. Figures 11(a) and 11(b) show two
examples of twisted dynamics for N = 24 with winding numbers
q = 1 [panel (a)] and q = 3 [panel (b)].

APPENDIX F: ANTIPHASE STATES IN RING
NETWORKS

Here, we provide the stability analysis of antiphase states in
topologies given by either Eqs. (16) or (17) with an even number of
populations N. Antiphase states are a particular case of twisted states
with winding number q = N/2 (β = π). Thus, the analysis provided
in Appendix E also applies here. Nonetheless, for this particular case,
we can provide a simpler analysis in close analogy to that performed
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FIG. 10. Bifurcation diagrams for twisted states in ring networks with N = 24
[panel (a)] and N = 128 [panel (b)]. Colored curves show the stability boundaries
of twisted states with different winding number q, with labels located in the region
of stability. The gray-shaded region indicates the region where no twisted state
is stable. The vertical dashed line indicates the Kuramoto synchronization transi-
tion H0. In panel (b), the boundary of the solution corresponding to q = 1 (brown
curve) is barely visible, as it is almost identical to that of q = 0 (black curve).
Brown circle and purple square in panel (a) indicate the parameters corresponding
to the simulations depicted in Fig. 11.

in Sec. III. Antiphase states are solutions of Eq. (3) given by

Zσ =
{

R̂ ei�̂t if σ is even

R̂ ei(�̂t+π) if σ is odd.
(F1)

Inserting these expressions into Eq. (3) and using the corresponding
expression of cσκ , we obtain that

R̂ =
√

1 − 21

K(2µ − 1) cos(α)
and

(F2)

�̂ = ω − tan(α)[K(2µ − 1) cos(α) − 1].

FIG. 11. Simulations of twisted states in the ring model with N = 24. (a) Twisted
state with q = 1, corresponding to K = 25 and µ = 0.5 [see brown circle in
Fig. 10(a)]. (b) Twisted state with q = 3, corresponding to K = 38 and µ = 0.7
[see purple square in Fig. 10(a)]. In both cases, only the collective phase 8σ

is shown, as Rσ is homogeneous. Simulations have been initialized close to the
corresponding twisted state, with ω = 0 for visualization.

By linearizing (3) around this solution, we obtain

żσ =
(

−1 + iω − K(2µ − 1)R̂2 eiα
)

zσ

+ K

2

M
∑

κ=1

cσκ

(

zκ e−iα − R̂2z∗
κ eiα

)

. (F3)

By choosing ω = tan(α)[K(2µ − 1) cos(α) − 1] and replacing the

expression of R̂ from Eq. (F2), we obtain

żσ = Âzσ + B̂

N
∑

κ=1

cσκzκ , (F4)

where

Â =
(

1 − K cos(α)(2µ − 1) −1 tan(α)

1 tan(α) 1 − K cos(α)(2µ − 1)

)

(F5)
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and

B̂ =









1

2µ − 1

1

2µ − 1
tan(α)

−K sin(α) + 1

2µ − 1
tan(α) K cos(α) − 1

2µ − 1









. (F6)

Analogously to the stability of the homogeneous states shown in
Sec. III, we apply the MSF formalism based on decomposing a per-
turbation on the basis of the eigenvectors of the connectivity matrix
C. As a result, we obtain that the stability of the antiphase state is
given by the eigenvalues of the N 2 × 2 matrices,

M̂k = Â + 3kB̂ for k = 1, . . . , N, (F7)

where 3k are obtained from Eq. (18). The explicit expression of the
system eigenvalues reads

λ̂
(±)

k = 1 + K cos(α)

(

3k

2
+ 1 − 2µ

)

±
{

K232
k cos2(α)

4

+ K3k1 cos(α)

2µ − 1

[

tan2(α)(2µ − 1 − 3k) − 3k

]

+ 12

(2µ − 1)2

[

(32
k − (2µ − 1)2) tan2(α) + 32

k)
]

}1/2

. (F8)

From this expression, we shall highlight several aspects:

• As in the homogeneous state, the antiphase state is a peri-
odic solution in a co-rotating frame. Therefore, at least one
of the eigenvalues has to be 0. This corresponds to 3N = 2µ
− 1, as the associated eigenvector indicates perturbations acting
opposite on each node consecutively, i.e., from Eq. (19),

9
(N)
j =















1√
N

if j is odd,

−1√
N

if j is even.

(F9)

• Taking into account the previous point, for N = 2, the stability
of the antiphase solution is controlled by the eigenvalue associ-
ated to k = 1. Substituting, thus, 31 = 1 in Eq. (F8) and solving

for λ
(±)
1 = 0, we obtain the bifurcations from the antiphase

state in the two-population model. This eigenvalue can be zero
through a pair of complex conjugates or a single real eigenvalue,
defining thus the subcritical Hopf (H-) and the pitchfork (PF’-)
bifurcations displayed in Fig. 3.

• For N > 2, other eigenvalues rather than 31 can lead to instabil-
ities of the antiphase state. This is the case of Fig. 5(a), in which
the left branch of the instability is always given by 31, but the
right branch corresponds to other modes depending on N.
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