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Abstract

Cognitive disorders, including Down syndrome (DS), present significant morphological alter-

ations in neuron architectural complexity. However, the relationship between neuromorphologi-

cal alterations and impaired brain function is not fully understood. To address this gap, we

propose a novel computational model that accounts for the observed cell deformations in DS.

The model consists of a cross-sectional layer of the mouse motor cortex, composed of 3000

neurons. The network connectivity is obtained by accounting explicitly for two single-neuron

morphological parameters: the mean dendritic tree radius and the spine density in excitatory

pyramidal cells. We obtained these values by fitting reconstructed neuron data corresponding

to three mouse models: wild-type (WT), transgenic (TgDyrk1A), and trisomic (Ts65Dn). Our

findings reveal a dynamic interplay between pyramidal and fast-spiking interneurons leading to

the emergence of gamma activity (*40 Hz). In the DS models this gamma activity is dimin-

ished, corroborating experimental observations and validating our computational methodology.

We further explore the impact of disrupted excitation-inhibition balance by mimicking the reduc-

tion recurrent inhibition present in DS. In this case, gamma power exhibits variable responses

as a function of the external input to the network. Finally, we perform a numerical exploration of

the morphological parameter space, unveiling the direct influence of each structural parameter

on gamma frequency and power. Our research demonstrates a clear link between changes in

morphology and the disruption of gamma oscillations in DS. This work underscores the poten-

tial of computational modeling to elucidate the relationship between neuron architecture and

brain function, and ultimately improve our understanding of cognitive disorders.

Author summary

The structural integrity of individual brain neurons and the intricate networks they form

are fundamental to all brain functions, with structural anomalies directly linked to
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neurological disorders. Deciphering these links is a leading question in developmental dis-

orders such as Down syndrome. Our work sheds light on the pivotal role that the structure

of complex neural systems plays in shaping emergent network activity. In particular, our

anatomically informed network modeling enables determining the extent to which specific

deficits in neuronal architecture and connectivity perturb oscillatory patterns of activity.

Introduction

Down Syndrome (DS), caused by the trisomy of chromosome 21, is associated with a wide

spectrum of cognitive deficits [1], making it the most prevalent form of intellectual disability.

Notably, abnormalities in the nervous system of individuals with DS manifest already at the

single-neuron level. Mouse models of DS exhibit a significant reduction of dendritic tree

branching and spine density when compared to control groups [2–4], features that have also

been found in human postmortem tissue [5]. These morphological alterations are believed to

play a significant role in the disruption of neural circuitry, ultimately contributing to the cog-

nitive impairments associated with DS. Nevertheless, the precise mechanisms underlying the

relationship between microscopic morphological alterations and mesoscopic brain dysfunc-

tion remain unknown.

Electrophysiological studies also show abnormal neural synchronicity in DS [6]. In particu-

lar, gamma rhythms (* 40 Hz) appear to be significantly reduced in both awake and anesthe-

tized DS mouse models [7]. Alterations of these fast neural rhythms are not exclusive to DS,

and have also been observed in other neuropathologies, such as Alzheimer’s disease [8, 9].

Gamma oscillations emerge from the collective activity of neural networks in both the hippo-

campus and cortex, and have been consistently associated with various cognitive processes,

such as decision-making and memory tasks, across different species [10–17].

Thus we hypothesized that there is a direct link between microscopic circuitry abnormali-

ties and functional deficits. However, this relation cannot be tested experimentally due to the

presence of confounding factors in animal models. For instance, Ruiz-Mejias et al. [7] also

reported a significant reduction of inhibitory connections targeting parvalbumin-positive

interneurons in DS. This weakened recurrent inhibition was hinted as a potential cause for the

reduction of gamma oscillations using a computational model, but the role of neuromorpholo-

gical alterations was not explored in that study.

Here we propose a data-driven computational model of a simplified local neural network

that incorporates some of the observed neuromorphological changes present in DS mouse

models. We selected two different mouse models. The first model is trisomic for about two-

thirds of the genes orthologous to human chromosome 21, (Ts(17(16))65Dn) [18], and is a

well-characterized model for studying DS. We refer to this genotype as Ts65Dn for brevity.

The second model (TgDyrk1A) [19], overexpresses only the dual-specificity tyrosine phos-

phorylation-regulated kinase 1a (Dyrk1a), a gene whose overexpression recapitulates the main

neuronal architecture defects and cognitive impairments of the trisomy [20]. By integrating

empirical data on dendritic complexity and spine density obtained from wild-type (WT),

transgenic (TgDyrk1A), and trisomic mice (Ts65Dn), we construct a simplified cortical-layer

structural model representing the synaptic connectivity of a neural network composed of

point neurons, including pyramidal and fast-spiking interneurons. Simulations of these neural

networks using Izhikevich dynamics [21] provide the functional differences between the three

genotypes. Specifically, the model reproduces the deficit in gamma oscillations observed in DS

animal models and allows us to test the role of reduced recurrent inhibition observed in [7].
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Moreover, the scalable nature of the modeled morphologies enables us to explore the morpho-

logical space. This exploration includes values that do not correspond to specific animal mod-

els, allowing us to assess the impact of fabricated topologies on gamma rhythm generation.

Altogether, our study offers new insights into the complex interplay between neural mor-

phology and network-level dynamics, thus contributing to our understanding of neurodeve-

lopmental disorders.

Results

Our model consists of an in silico representation of a cross-section of layers II/III of the mouse

motor cortex. In this neural network, we considered a total of N = 3037 neurons randomly dis-

tributed in a 2-dimensional square, with each side measuring 1500 μm. Details on the model

construction, relevant parameters, and their grounding to the literature are outlined in the

Methods section, but we briefly summarize the main aspects here.

The main challenge in our computational approach is to represent neural connectivity in a

way that integrates single-cell morphology. Following the ideas of previous modeling studies

[22, 23], we approach this problem by assuming simplified neuronal shapes paired with synaptic

contact probability clouds based on experimental data. Each synthetic neuron is composed of a

soma, a dendritic tree with variable size, and an axon. Axons are generated following a biased

random walk starting from each neuron’s soma (see Fig 1). Whenever there is an intersection

between a dendritic tree and an axon, a synapse is established according to a synaptic contact
probability (SCP). The SCP function quantifies the likelihood of encountering a branch with a

spine at a certain radial distance from the soma, denoted as r. Consequently, the SCP is influ-

enced by the unique morphological attributes of each genotype (WT, Ts65Dn, and TgDyrk1A).

Synaptic contact probability from morphological data

To model the impact of neuromorphological alterations on the neural network topology in

healthy and DS conditions we analyzed 18 individual pyramidal neurons from WT, Ts65Dn,

Fig 1. Schematic representation of the neural network topology generation. Small and large black circles represent

the neurons’ soma and dendritic tree, respectively. The color gradient of the dendritic tree corresponds to the synaptic

contact probability of each of the two neurons. Blue curves depict the axons, grown according to a biased random walk.

Since the axon of neuron i overlaps with the dendritic tree of neuron j, a synapse might be established. The strength of

the synapse depends on the length of the overlap and the value of the SCP along the coincident sites.

https://doi.org/10.1371/journal.pcbi.1012259.g001
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and TgDyrk1A animal models (6 neurons for each genotype, see Methods) to calculate SCP

based on single-cell morphology data.

Reconstructions of the analyzed neurons are displayed in Fig 2(a)–2(c). For each cell, we

obtained the dendritic branching using a Sholl analysis [24]. The Sholl intersection profile is

obtained by counting the number of dendritic branches at a given distance from the soma and

is a key measure of dendritic complexity. Fig 2(d) shows the average number of intersections

as a function of the distance from the soma r for each genotype. Neurons corresponding to the

pathological conditions display significantly less branch density and shorter dendritic trees

than the control condition (WT). Nonetheless, the shape of the branch density distribution,

e.g. how branches are distributed or clustered in a particular area, exhibits a consistent similar-

ity among the three cases, with variations primarily attributable to scaling factors. Using the

WT case as the reference, we performed a non-linear fitting of the averaged Sholl intersection

profile using the function

BDðrÞ ¼ ax expð� bx4Þ : ð1Þ

The choice of this function allows for an appropriate fit of the data with only two free parame-

ters. The black curve in Fig 2(d) depicts the outcome of the fitting, with the resulting function

parameters detailed in Table 1.

Next, we consider the dependency of spine density on the distance from the soma. Here we

use data previously published in [2, 3] (see Fig 2(e)). Again, the maximal spine density remains

comparable across trisomic, transgenic, and WT genotypes, but is influenced by the shorter

dendritic trees in pathological conditions. We fit the WT spine density distribution using a 6th

Fig 2. Neuromorphological data and corresponding models. (a-c) Reconstructed neurons for each of the three animal models. (d) Sholl intersectional

profile (branch pattern complexity) for the three different genotypes (WT, Ts65Dn, and TgDyrk1A). Each dataset corresponds to the average

reconstruction of 6 different neurons. Black curve corresponds to fitting Eq (1) to the WT data (see Table 1). (e) Spine density for each different genotype as

published in previous literature. The spine numbers are per 10 μm, thus the distributions are divided by 10 in the fitting procedure. Black curve

corresponds to fitting Eq (2) to the WT data (see Table 1). (f) Resulting synaptic contact probability function. Circles, squares, and triangles obtained from

the data presented in panels (d) and (e), continuous curves obtained from the nonlinear fitting of Eq (4) using the rescaling parameters α and β (see

Table 2).

https://doi.org/10.1371/journal.pcbi.1012259.g002
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degree polynomial

SDðrÞ ¼
X6

j¼0

cjx
j : ð2Þ

Table 1 contains the parameter values obtained from the fitting, and the black curve in Fig 2(e)

shows the resulting function.

The product of the BD and SD functions provides the average spine density at a certain dis-

tance from the soma. These functions assume straight dendrites, whereas these are actually

irregularly shaped in nature. Indeed, while the largest distance between a spine and the soma

in the WT case is 218 μm, using a convex polygon fitting of reconstructed WT neurons, we

found an average mean dendritic tree radius of RWT ¼ 156:30 mm (see Methods). To account

for the actual shape of the dendritic tree, we rescale the radius in the BD and SD functions by a

factor γ = 218/156.30. Finally, we divide by 2πr to account for the circular shape of the den-

dritic tree.

Altogether, for a typical WT neuron, the probability of finding a spine at a distance r from

the soma is given by

SCPðrÞ ¼
BDðgrÞSDðgrÞ

2pr
: ð3Þ

This function is depicted in Fig 2(f) (see red continuous curve), together with the morphologi-

cal data (see red circles).

In order to obtain a SCP distribution for Ts65Dn and TgDyrk1A, we exploit the fact that

their spine and branch densities in Fig 2(d) and 2(e) follow a similar shape to the WT case up

to scaling factors. Therefore, we consider the following generalization of the SCP:

SCPðr; a; bÞ ¼ a
BD g

b
r

� �
SD g

b
r

� �

2pr
:

ð4Þ

Here, the parameter α determines an overall scaling of the SCP in comparison to the WT,

whereas b ¼ R=RWT provides the ratio of the mean dendritic tree radius in comparison to

WT. We fit the expression in Eq (4) to the data corresponding to Ts65dn and TgDyrk1A (see

blue squares and green triangles in Fig 2(c)) with α and β as free parameters. Table 2 contains

the resulting values of the neuromorphological parameters, and continuous curves in Fig 2(f)

display the resulting shape of the SCP.

Table 1. Results of the nonlinear least-squares fitting of BD(r) and SD(r).

Parameter Value

a 0.458

b 3.39 � 10−9

c0 0.0432

c1 −0.258

c2 0.0244

c3 −4.20 � 10−4

c4 3.12 � 10−6

c5 −1.08 � 10−8

c6 1.44 � 10−11

https://doi.org/10.1371/journal.pcbi.1012259.t001
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The good agreement between the SCP model (Eq (4)) and the morphological data for the

three genotypes substantiates the characterization of single neurons’ morphology alterations in

DS with only two parameters, α and β.

Morphology changes impact network connectivity

We generate network topologies corresponding to each of the studied genotypes with the syn-

aptic contact algorithm described in Methods and illustrated in Fig 1. Topology generation

parameters are identical for all genotypes (WT, Ts65Dn, and TgDyrk1A) except for α and β as

described in the previous section (see Table 2).

In order to characterize the main circuitry changes between the three genotypes, we analyze

and compare the topologies in terms of network density, degree centrality, and synaptic

strength (see Methods for definitions). To account for the variability on different network gen-

erations, we create and analyze 10 different networks for each mouse model. Table 3 contains

the average quantities of the computed measures for each case, and Fig 3 displays the corre-

sponding degree and weight distributions.

First, in terms of network density, the three genotypes provide sparse topologies, with less

than 7% of all possible links present. Moreover, pathological genotypes show a significant

decrease of network density with respect to control. The in-degree and out-degree distribution

of the networks (see Fig 3(a) and 3(b)) also reflect this reduction of connectivity in the Ts65dn

and TgDyrk1A models, with the average degree being almost half of that of the WT in both

cases. In spite of the reduced density of TgDyrk1A compared to Ts65Dn, the degree distribu-

tions do not show significant changes between the two pathological cases.

Since in our model a presynaptic neuron can establish several contacts with the same post-

synaptic neuron, we also take into account how such synaptic strength varies across genotypes

(see Fig 3(c)). In this case, the differences between DS models and WT are less prominent,

with only TgDyrk1A showing a decrease of average synaptic strength with respect to WT.

Overall, this analysis reflects that morphology changes incur a direct impact on the connec-

tivities generated by our model. These differences are mainly reflected by an important

decrease of number of pre and post-synaptic connections established by each neuron in the

DS models, with the strength of such connections displaying only mild changes between geno-

types. This scenario is consistent across network generations, as indicated by the small stan-

dard deviations shown in parenthesis in Table 3 and in the shaded regions of Fig 3.

Table 2. Parameter values corresponding to the synaptic contact probability obtained from fitting Eq (4) to the

data with α and β as free parameters.

Parameter WT Ts65Dn TgDyrk1A

α 1.0 0.937 0.826

β 1.0 0.644 0.597

R ¼ bRWT 156.30 100.66 93.31

https://doi.org/10.1371/journal.pcbi.1012259.t002

Table 3. Global topological measures for each genotype. Each value indicates the average measure over a population of 10 networks generated with the same genotype

parameters α and β. Values in parenthesis correspond to the sample standard deviation. Precise definitions for each measure are provided in the Methods section. The

source code to generate network topologies is openly available at github.com/pclus/neuromorphology.

Genotype Network density (%) Average degree Average synaptic strength

WT 6.6 (0.051) 200 (1.6) 11 (0.025)

Ts65Dn 4.0 (0.027) 120 (0.81) 11 (0.019)

TgDyrk1A 3.6 (0.039) 110 (1.2) 9.4 (0.024)

https://doi.org/10.1371/journal.pcbi.1012259.t003
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Simulations recapitulate disrupted gamma activity in pathological

conditions

Next, our aim is to investigate how the topological changes induced by morphology alterations

affect the network at a functional level. We simulate the dynamics of each neuron using the

Izhikevich model with parameters set for regular spiking (pyramidal) and fast-spiking (inter-

neurons) [21] (see Methods). Importantly, each neuron in the network receives an indepen-

dent train of external excitatory inputs following a Poisson shot process with frequency λ. The

code to simulate the network is openly available at github.com/pclus/neuromorphology.

Fig 4(a)–4(f) show raster plots and mean-firing rate time series for each genotype obtained

from network simulations with λ = 9 kHz. Single unit spike trends are rather irregular due to

the three different stochastic sources in the model: randomness of the network generation,

external inputs λ, and finite-size effects. Nonetheless, noisy collective oscillations emerge due

to the interplay between the fast-spiking interneurons, the excitatory neurons, and the external

excitatory input. This onset of gamma rhythmic activity in a noisy environment corresponds

to the paradigmatic pyramidal-interneuron network gamma (PING) mechanism [13, 25–27].

S1, S2 and S3 Movies show such dynamic activity at both single-cell and collective levels.

Visual inspection of individual simulations in Fig 4(a)–4(f) already indicate a lack of syn-

chronicity in the Ts65Dn and TgDyrk1A models. In order to properly compare the dynamics

of the three cases, we capture the collective activity in each simulation by computing the local

field potential (LFP) as the average network firing rate (see Methods). Furthermore, to test the

consistency of the results against statistical fluctuations of the topology generation and external

input simulation, we use 10 networks for each of the three neuronal genotypes, and each of

them is simulated independently 10 times, resulting in a total pool of 100 time series for each

parameter set.

Continuous lines in Fig 4(g) show the average power spectra of the LFP corresponding to

each animal model for an input rate λ = 9 kHz. In all three genotypes, the spectrum shows a

clear peak around 40 Hz, with very small deviation across different noise realizations, confirm-

ing the robustness of the gamma activity in the model. Nonetheless, the TgDyrk1A and

Ts65Dn models display a clear reduction of gamma power compared to the WT case. This

decrease in power is paired with a slight decrease in the peak frequency. These results align

with empirical observations of reduced gamma activity in prefrontal cortex of TgDyrk1A mice

with compared to WT [7].

Further assessment of the dynamical differences between the three genotypes is provided

by the analysis of the interspike interval (ISI) distribution. S1(a) and S1(b) Fig show the

Fig 3. Topological measures distribution for each genotype. (a,b) In-degree (panel (a)) and out-degree (panel (b)) distributions corresponding to WT

(red), Ts65Dn (blue), and TgDyrk1A (green). (c) Distribution of synaptic strengths, i.e., number of connections between the same two neurons. In all

panels, lines correspond to the average of 10 network generations, with shaded regions indicating standard deviation. Standard deviation in panel (c) is too

small to be visibly appreciated.

https://doi.org/10.1371/journal.pcbi.1012259.g003
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average interspike interval distribution of each simulation for excitatory and inhibitory neu-

rons respectively. Remarkably, the ISI distributions of pyramidal neurons show a broad pro-

file, with a coefficient of variation around 1.1. Moreover, the three genotypes display a peak

around 100 ms, indicating thus a preferred spiking period four times larger than the period of

the collective gamma oscillation. On the other hand, inhibitory neurons do show a promi-

nence of spikes around 25 ms, revealing thus the significance of interneuron activity for the

emerge of gamma oscillations. The WT ISI distribution of inhibitory neurons also presents a

larger peak at shorter periods, corresponding to repetitive firing of interneurons when the

excitatory feedback is strong enough.

Next, we investigate the effects of the external firing rate λ on the network dynamics. Fig 4

(h) and 4(i) show the peak frequency and power, respectively, for the three genotypes upon

varying λ (solid lines in the two panels). Additionally S3 and S4 Figs show raster plots and

mean firing rate activity for individual simulations with λ = 6 and 12 kHz respectively. For all

explored values, the three models produce robust oscillatory activity with a peak frequency

generally within the gamma range (30–80 Hz). For low values of λ, the network frequency

shows similar behavior for all three mouse models, displaying an increase with external input

up to λ� 12 kHz (see Fig 4(h)). However, for larger values of external input, the monotonic

dependence of the frequency on λ breaks down for the DS models. Such decline in frequency

observed in TgDyrk1A and Ts65Dn for large λ values is concomitant with an elevation in vari-

ability across network realizations, suggesting a lack of uniformity in generating gamma oscil-

lations in the pathological models.

Fig 4. Neuronal network activity. (a-c) Raster plots showing the spike times of excitatory (black) and inhibitory (red) neurons for WT (panel (a)), Ts65Dn

(panel (b)), and TgDyrk1A (panel (c)). (d-f) Mean firing rate of excitatory (black) and inhibitory (red) neurons corresponding to the raster plots shown in

panels (a-c). (g) Power spectrum of LFP signals for an input frequency of λ = 9 spikes/ms. Each curve corresponds to the average of 100 spectra

corresponding to 10 independent realizations of the noise for 10 different topologies. Shaded regions indicate the standard deviation among the samples.

Red, blue, and green correspond to the morphological parameters of the WT, Ts65Dn, and TgDyrk1A cases, respectively (see Table 2). Dashed lines

correspond to simulations with recurrent inhibitory synapses reduced to 0.3 of the original value. (h,i) Location of the peak power in the averaged LFP

power spectra (h) and corresponding power (i) obtained for different values of the external firing rate λ. Circles and continuous lines indicate results using

the default network parameters. Triangles and dashed lines correspond to reduced recurrent inhibition, as in panel (g). Error bars indicate the standard

deviation over the 100 simulations pool.

https://doi.org/10.1371/journal.pcbi.1012259.g004
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Regarding the power of the neural oscillations (Fig 4(i)), the WT model demonstrates a

notably higher gamma amplitude as compared to the DS models for λ> 7 kHz. These differ-

ences in power between genotypes remain mostly unchanged upon increasing λ, although all

three models show a reduction of oscillatory coherence as the external input increases. This is

consistent with the increase of single neuron spike irregularity, as captured by the average CV

displayed in S1(c) and S1(d) Fig. Overall, the scenario remains similar to that displayed in Fig

4(g), and reproduces experimental findings observed in electrophysiology studies of the

TgDyrk1A model [7].

Reduced recurrent inhibition might increase or reduce oscillatory activity

Histological analysis of TgDyrk1A and WT mice cortex shows a significant reduction of the

inhibitory synapses acting upon interneurons in the DS model [7]. We expect this to influence

the network dynamics, since parvalbumin-positive interneurons are known to modulate

gamma activity in the cortex [13, 14, 27]. Moreover, recurrent inhibition, one of the key factors

involved in fast collective activity [28], was probably a leading cause of the gamma impairment

in the DS model [7] given the reduction of GABAergic contacts among interneurons.

In this section, we test the effect of reduced recurrent inhibition in our model. While in
vivo, this perturbation of the network balance only occurs for DS animals, we deliberately test

the effects of disrupted inhibition in all three genotypes. This allows us to compare the effects

of morphology alterations and reduced inhibition separately, both of which coexist in DS ani-

mal models.

Dashed lines in Fig 4(g) show the average power spectral density (PSD) obtained from sim-

ulations in networks with inhibitory-to-inhibitory synaptic strength reduced to 30% for λ = 9

kHz. While the three genotypes still exhibit a prominent peak around 40 Hz, there is a substan-

tial decrease in activity across all frequency bands when contrasted with the unperturbed mod-

els. Significantly, the distinctions in power between WT and DS models vanish, resulting in

nearly identical spectra for all three. Raster plots and mean firing rates of individual simula-

tions in S2, S3 and S4 Figs indicate that this reduction of power corresponds to an increased

inhibitory activity, which in turns lowers the activity of excitatory neurons.

Once more, we test the soundness of this scenario upon changing λ. Dashed lines and trian-

gles in Fig 4(h) show the peak frequency for the models with weakened recurrent GABAergic

contacts. For low values of the external input, the main frequency of oscillation remains close

to the unperturbed models. Moreover, disrupted inhibition rescues the drop in gamma fre-

quency of the DS models reported in the previous section. Indeed, with higher values of λ all

three genotypes exhibit faster oscillatory activity compared to their respective unperturbed

models, with no discernible distinctions between the three genotypes.

The stimulating effect of decreased recurrent inhibition on the oscillatory frequency

within the DS models differs from its effects on peak power. Dashed lines and triangles in

Fig 4(i) show two different scenarios depending on whether the external input is smaller or

larger than λ� 7 kHz. With lower external activity levels, disrupted recurrent inhibition

enhances oscillatory power, with the WT model consistently exhibiting greater power than

the DS models. Conversely, for higher external activity levels, the power of the three modi-

fied models rapidly declines below the levels of the default models, with all three genotypes

reaching a plateau for λ> 10 kHz. In this range, no substantial differences in power are dis-

cernible among the three genotypes. Furthermore, within this range, the impact of disrupted

excitation-inhibition balance on gamma power in the WT appears to be twofold compared

to the drop of gamma between the unperturbed WT and DS models. Since frequencies above
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40 Hz require λ> 9 kHZ (Fig 4(h)), these results suggest that reducing recurrent inhibition

notably impedes gamma synchronicity, in agreement with [7].

The abrupt reduction in peak power in the disrupted networks corresponds to a transition

from a highly synchronized state to a regime in which neurons fire irregularly, while still

exhibiting some degree of collective synchronous behavior, mainly through the interneuron

population. These two forms of gamma activity have been identified in previous computa-

tional studies and are usually referred to as strong and weak gamma, respectively [29, 30]. The

sensitivity of the network rhythmicity on the external input λ in the perturbed models high-

lights the importance of recurrent inhibition to obtain robust gamma rhythms in cortical neu-

ral networks.

Parameter exploration

The unified SCP (Eq (4)) function derived from the morphological data for the three animal

models enables the investigation of the network activity generated by hypothetical neuron

morphologies. In this context, we explore the influence of the spine density (α) and dendritic

tree size (β) on the power and frequency of the gamma rhythm.

Fig 5 shows the outcome of the LFP signal obtained from numerical simulations in network

topologies generated with specific values of the scaling parameters for the mean dendritic tree

β and synaptic contact probability α. The peak of the gamma activity is observed at higher fre-

quencies for networks with low values of α and high values of β. Conversely, the power of such

gamma activity becomes larger when both morphological parameters are high. This dual rela-

tionship highlights that there is no specific region within the morphological space where both

frequency and power can be maximized concurrently. Instead, the emergence of these fast

oscillations is driven by the topological features of the networks in a nonlinear manner.

When using the exact values of the animal models in this exploration, it becomes evident

that the most prominent difference between the DS and the WT is given by a substantial

reduction of the parameter β. This implies that the size of the dendritic tree exerts a pivotal

influence on the gamma abnormalities when compared with the reduction of the SCP parame-

ter α. Consequently, our computational results indicate that the gamma impairment in DS

models is primarily attributed to the loss of synaptic connections among neurons rather than a

decline in the overall strength of these connections. Nonetheless, the parameter exploration

Fig 5. Network activity dependence on the morphological parameters showing the frequency peak of the gamma rhythm (a) and corresponding LFP

power (b). Results from numerical simulations of networks for external input λ = 10 kHz. Each pixel of the heatmap corresponds to the average of results

obtained with 10 different network topologies, each simulated with 10 different realizations of the noise. Parameters corresponding to the studied

genotypes are marked with black circles for reference.

https://doi.org/10.1371/journal.pcbi.1012259.g005
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suggests that changes on SCP stronger than those observed in Ts65Dn and TgDyrk1A could

also significantly alter gamma oscillations (see also S5 Fig).

Discussion

In this study, we aimed to explore the interplay between neuromorphological alterations and

network dynamics in DS, using a data-driven computational model. Our findings provide

compelling evidence that the incorporation of empirical data on dendritic complexity and

spine density into the model enables the faithful replication of the reduction in gamma oscilla-

tions documented in DS animal models [7]. These results strongly indicate that the neuromor-

phological changes observed in DS are pivotal contributors to the disruption of gamma

activity, providing valuable insights into the underlying mechanisms of network dynamics

associated with DS.

An important challenge of this work has been to integrate single-cell morphology data into

the generation of the neural network architecture. Few studies include morphology in neural

network topology, and the options vary based on the desired biological realism: from sophisti-

cated cloning of reconstructed morphologies paired with touch-detection rules [31–33], to

generating random networks based mostly on axo-dendritic overlap [22, 34]. A mid-way

approach consists of defining a probability region based on different morphological parame-

ters [23, 35, 36].

Here we took this intermediate route by incorporating a synaptic contact probability (SCP)

function into the model developed in [22]. Through an analysis of single-cell morphology

data, we devised a quantitative model for the SCP that integrates dendritic complexity and

spine density of different mouse models. Remarkably, our findings demonstrate that the three

genotypes examined in this study (WT, trisomic, and single-gene transgenic TgDyrk1A) can

be accurately represented by a single SCP function, with scaling factors accounting for their

distinct characteristics. This result allowed us to explore the broader morphological landscape

beyond the confines of specific animal models.

The simulations conducted in the study demonstrate the influence of diminished recurrent

inhibition on network dynamics. The reduction of inhibitory connections, particularly those

targeting parvalbumin-positive interneurons, previously reported in DS animal models [7],

has been proposed as a potential cause for the observed reduction in gamma oscillation. The

model’s implementation of reduced recurrent inhibition successfully reproduces the effects on

gamma activity, underscoring its pivotal role in modulating network dynamics. Notably, per-

turbing excitation-inhibition balance rescues the drop in frequency in DS models but concur-

rently diminishes oscillatory power. These results align with previous empirical and modeling

studies identifying recurrent inhibition as a key ingredient for the emergence of gamma oscil-

lations [14, 27, 28, 37–39].

Furthermore, the study explores the morphological parameter space and demonstrates that

there is no single regime in which both frequency and power of gamma oscillations can be

maximized. Moreover, the reduction in dendritic tree size (β) appears to be a major factor con-

tributing to the gamma abnormalities in DS, while the reduction in synaptic contact probabil-

ity (α) plays a secondary role.

In summary, the data-driven computational model presented in this study successfully inte-

grates neuromorphological alterations observed in DS animal models and reproduces the

reduction in gamma oscillations. The findings support the notion that microscopic circuitry

abnormalities contribute to the disruption of network dynamics in DS. The model provides a

controlled framework to explore the impact of morphology alterations and elucidate their role

in network synchronicity.
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Model limitations

Our data-driven computational approach relies on several modeling assumptions that

should be taken into account when drawing biological conclusions from the results. One

major simplification pertains to the morphological model for network topologies, which

simplifies neuronal shapes and may not fully capture the diversity and intricacy of real mor-

phologies. Furthermore, the axon growth model doesn’t consider the precise axon terminal

locations.

Another aspect is the dynamical model employed for the simulations. Here we considered

idealized point neurons, which are simplified models that disregard the influence of detailed

structures, such as dendrites and axons, on the dynamics of the cell. While these simplifica-

tions facilitate easier analysis and interpretation, they may not fully capture the effects that

morphology can have on the system dynamics. To this end, compartmental models could

allow the incorporation of specific relations such as the effects of smaller dendritic trees on the

synaptic delays.

Despite these limitations, our data-driven computational model is an important milestone

in understanding the importance of neuromorphological alterations in neurodevelopmental

diseases. Further work should allow us to improve and further validate our assumptions based

on empirical data, as well as focus on other brain areas which are known to be also affected in

DS, such as the hippocampus.

Methods

Data gathering

We used previously published single-neuron 2D tracings of cortical layer II/III pyramidal neu-

rons. Those were traced as part of previous studies of our team, following experimental proce-

dures detailed in [40–42]. Briefly, cells were injected with Lucifer Yellow, immuno-stained

with a biotinylated secondary antibody and biotin–horseradish peroxidase complex. Tissue

sections were imaged with brightfield microscopy and traced using camera lucida microscope

attachment. Specifically, the details for the tracing of WT and Ts65Dn neurons can be found

at [2], and those for TgDyrk1A neurons can be found at [3]. We did not find differences in

neuronal morphology between the WT strains of trisomic and transgenic mice, and thus we

consider WT parameters to be the same for the two DS mouse models, thus allowing compari-

sons among the three genotypes. All data used in this study is openly available at github.com/

pclus/neuromorphology.

Topology generation

The generation of the network topology has been largely inspired by the model developed by

Orlandi et. al. [22]. We included substantial modifications to their proposal to account for spe-

cific morphological variants of single neurons. A C code of the resulting algorithm is openly

available at github.com/pclus/neuromorphology.

Using a full 3D representation of the cortical layer II/III with realistic neuronal densities is

not possible due to computational limitations [22, 43]. Thus we considered a thin 2-dimen-

sional cross-section of the cortical layer with a thickness of a single cell soma, 16 μm.

The neuronal density of the synthetic circuit is set to 1350 neurons/mm2, obtained by mul-

tiplying the neuronal density in the 3D layer by the width of the thin layer modeled. Based on

this assumption, we placed randomly N = 3037 neurons in a 2-dimensional square with a side

length of 1.5 mm. To mitigate the effects of imposing a too-small spatial domain, we provided
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the circuit with periodic boundary conditions. The spatial resolution of the in silico layer is

1 μm.

In the model, each neuron has three components: the soma, the dendritic tree, and the

axon (see Fig 1 for a schematic representation). All neurons have identical soma, which are

modeled as circles of radius RS = 16 μm. The center of each neuron’s soma is randomly dis-

tributed on the 2-dimensional layer, and overlapping somas are not allowed. The dendritic

tree of each neuron is also modeled as a circle, but in this case, we considered variability

among neurons. The radius of each neuron’s dendritic tree is a random number drawn

from a Gaussian distribution with mean R and standard deviation σ = 40. The mean den-

dritic tree radius R is one of the main control parameters of the study. As explained in the

Results section, we use the WT mean dendritic tree radius RWT as a reference. We measured

this quantity by calculating the 2D convex hull of the reconstructed WT dendritic trees. Spe-

cifically, we used the “boundary” function in MATLAB with shrink factor s = 0. To obtain

the mean radius we assumed that the area obtained with the convex hull forms a circle for

each tree.

The axon is modeled as a biased random walk starting from the center of the soma with a

random direction. After it has grown 10 μm, it modifies direction by θ degrees, where θ is a

random variable chosen from a Gaussian distribution with zero mean and standard deviation

σ = π/30 radians. The total length of each axon is obtained from a Rayleigh distribution with

mean l ¼ 500mm. This mean axon length has been chosen to simulate only local horizontal

connections (given by the local axonal tree in layers II/III), following experimental observa-

tions in the mouse M2 cortical layer II/III [43], and disregarding horizontal patchy connec-

tions, connections between cortical layers, and interhemispheric projections.

If the axon of neuron i overlaps the dendritic tree (but not the soma) of neuron j, then a

synapse is established with a probability p that depends on the distance r from the overlap

point to the neuron’s j soma. Such dependency is given by the function p = SCP(r;α, β) where

α and β are parameters that depend on the morphological variables. In particular, α is the ratio

between the synaptic contact probability of each mouse model and the wild-type (WT) value,

and β is the ratio between the dendritic tree radius of each mouse model and WT, i.e., b ¼

R=RWT where RWT ¼ 156:30mm is the mean dendritic tree radius of a WT neuron. The deriva-

tion of the synaptic contact probability function SCP(r) and the values of α and β for the differ-

ent animal models are detailed in the Results section.

Each grid square presenting an overlap between an axon and a dendritic tree can generate a

synapse, thus each pair of neurons might have multiple, in some cases several, synapses. In

other words, the resulting architecture of connections among neurons is a directed weighted

network given by the weight matrix W = (wij). Autapses are not allowed.

Topology measures

We analyze the network topologies generated by our model using standard measures of com-

plex network analysis:

1. Network density: Proportion of links present in the network with respect to the total num-

ber of possible links:

r ¼
1

NðN � 1Þ

XN

i;j¼1

aij ð5Þ
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where A = (aij) is the network adjacency matrix, i.e.,

aij ¼
1 if wij 6¼ 0

0 if wij ¼ 0 :

(

ð6Þ

2. In and out-degree: For each node i, the in-degree kini is the number of pre-synaptic neurons

with a contact on i. The out-degree kouti corresponds to the number of post-synaptic neu-

rons connected by i. They are computed as

kini ¼
XN

l¼1

ail and kouti ¼
XN

l¼1

ali : ð7Þ

3. Synaptic strength: Number of established connections between the same two neurons, wij.

Neuronal dynamics

Several models for spiking neuron dynamics exist in the literature. Here we use the model pro-

posed in [21], due to its apt trade-off between dynamical richness and computational effi-

ciency. The C code used to simulate the network dynamics is openly available at github.com/

pclus/neuromorphology. We consider a network composed of pyramidal and fast-spiking

interneurons only. Since the topology generation algorithm does not differentiate between the

two types, each neuron is set as either excitatory or inhibitiory randomly at the beginning of

each simulation with a 80%-20% proportion [26].

The dynamics of the i-th neuron in the network is ruled by the following ordinary differen-

tial equations,

_vi ¼ 0:04v2
i þ 5vi þ 140 � ui þ IAMPA

i þ IGABAi þ Iexti ð8Þ

_ui ¼ aðbvi � uiÞ ð9Þ

where vi is the membrane voltage potential, and ui is a recovery variable accounting for the

dynamics of the different ion channels. When the voltage of neuron i reaches a threshold of

v(thr) = 30, the neuron emits a spike and the voltage is reset to vi c, whereas ui ui + d.

Upon tuning the system parameters a, b, and d, one can obtain different dynamical behaviors

for each neuron. Here we focus on Regular Spiking (RS) for pyramidal neurons and Fast Spik-

ing (FS) for interneurons [21]. Table 4 indicates the numerical value for the parameters corre-

sponding to each neuron type.

The voltage of each neuron is influenced by the synaptic inputs coming from the excitatory

neurons of the network, IAMPA
i , inhibitory neurons IGABAi , and glutamatergic inputs coming

Table 4. Values of the system parameter to display regular spiking for excitatory neurons, and fast-spiking for

inhibitory neurons.

Parameter Pyramidal (RS) Interneuron (FS)

a 0.02 0.1

b 0.2 0.2

c -65 -65

d 8 2

https://doi.org/10.1371/journal.pcbi.1012259.t004
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from outside the network, Iext. In all cases, these inputs have the form

Isyni ¼ gsyni ðt � t0Þðv
syn
R � viÞ : ð10Þ

with vsynR being a reversal potential and gsyni is a time-dependent conductance, and τ0 = 1 ms is a

fixed synaptic delay. Upon receiving a spike, the neurotransmitter-activated ion channels open

and close following an exponential decay. For the recurrent AMPA and GABA connectivities

this reads

gsyni ðtÞ ¼ gsyn
XN

m¼1

wim

X

k

eðt� t
ðkÞ
m Þ=t

synHðt � tðkÞm Þ ð11Þ

where W = (wij) is the weight matrix of the network, tðkÞm is the time at which neuron m emitted

its k-th spike, H is the Heaviside step function, τsyn is the decay time, gsyn is the strength of the

synapse. The incoming signals from outside of the modeled layer consist of excitatory expo-

nential pulses only

gexti ðtÞ ¼ gext
X

k

eðt� tðkÞÞ=textHðt � tðkÞÞ:

These inputs account for post-synaptic potentials from other cortical layers, as well as other

brain regions projecting to layer 2/3. The spiking times t(k) are drawn from a Poissonian shot

process with frequency λ. We use λ as the main control parameter to test the oscillatory

response of the network. Values for gsyn, τsyn, and vsynR for the three synaptic types are given in

Table 5.

In order to capture the network activity, we model the local field potential (LFP) as the net-

work average firing rate (with time bins of 0.1 ms):

LFPðtÞ ¼
1

N

XN

m¼1

X

k

Hðt � tðkÞm Þ � Hðt � tðkÞm � 0:1Þ
� �

: ð12Þ

We opted to use the firing rate as a proxy to capture the actual network activity in our model.

Other options, which are based on the AMPA and GABA currents of the network, could be

susceptible to parameter changes such as when we model disrupted networks by reducing

gGABA targeting inhibitory neurons. Power Spectral Density of LFP time series have been com-

puted using the GNU Scientific Library [44] by first applying a fast Fourier transform algo-

rithm and then reducing the noise in the spectra through a Gaussian filter.

The firing activity of individual neurons and their regularity can be assessed by the inter-

spike interval (ISI) distribution and the corresponding coefficient of variation (CV). For each

neuron i we compute the time between consecutive spikes as ISIki ¼ tðkþ1Þ

i � tðkÞi . For periodi-

cally firing neurons, the ISI distribution approaches a delta function located at the period. On

the other hand, a broad ISI distribution reflects more complex, irregular, spiking patterns. To

characterize the regularity of the firing of each population type, we compute the ISI coefficient

Table 5. Values of the synaptic strength gsyn, decay times τsyn, and reversal potential vsynR for the ifferent

neurotransmitters.

gsyn τsyn vsynR

AMPA 0.006 mS 2 ms 0

GABA 0.720 mS 4 ms -70

External AMPA 0.008 mS 2 ms 0

https://doi.org/10.1371/journal.pcbi.1012259.t005
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of variation as CV = σ/μ, where μ and σ correspond to the mean and standard deviation of ISIki
respectively. We perform this analysis for pyramidal and inhibitory neurons separately.

Supporting information

S1 Fig. Interspike interval and firing regularity for different network morphologies. (a,b)

Interspike interval (ISI) distribution corresponding to pyramidal neurons (a) and inhibitiory

neurons (b) for λ = 9 kHz. Each curve corresponds to the average of 100 histograms corre-

sponding to 10 independent realizations of the noise for 10 different topologies. Shaded

regions indicate the standard deviation among the samples. Red, blue, and green correspond

to the morphological parameters of the WT, Ts65Dn, and TgDyrk1A cases, respectively.

Dashed lines correspond to simulations with recurrent inhibitory synapses reduced to 0.3 of

the original value. (c-f) Coefficient of variation (CV) of the ISI distribution of pyramidal neu-

rons (c) and inhibitory neurons (d) for different values of external input λ. Symbols corre-

spond to the average CV of 100 ISI distributions, and errorbars indicate the respective

standard deviation. Panels (c) and (d) correspond to the default network parameters, whereas

panels (e) and (f) correspond to simulations with recurrent inhibition reduced to 0.3 of the

original value.

(PDF)

S2 Fig. Gamma activity dynamics for an external input λ = 9 kHz. Raster plots and mean fir-

ing rate of the pyramidal (black) and inhibitory interneurons (red) for the WT (panels (a) and

(d)), Ts65Dn (panels (b) and (e))), and TgDyrk1A (panels (c) and (f)) morphologies. Panels (a-

c) correspond to simulations with unperturbed recurrent inhibition (same as in Fig 4(a)–4(f)),

and panels (d-f) correspond to recurrent inhibitory synapses reduced to 0.3 of the original

value.

(PDF)

S3 Fig. Gamma activity dynamics for an external input λ = 6 kHz. Raster plots and mean fir-

ing rate of the pyramidal (black) and inhibitory interneurons (red) for the WT (panels (a) and

(d)), Ts65Dn (panels (b) and (e))), and TgDyrk1A (panels (c) and (f)) morphologies. Panels

(a-c) correspond to simulations with unperturbed recurrent inhibition, and panels (d-f) corre-

spond to recurrent inhibitory synapses reduced to 0.3 of the original value.

(PDF)

S4 Fig. Gamma activity dynamics for an external input λ = 12 kHz. Raster plots and mean

firing rate of the pyramidal (black) and inhibitory interneurons (red) for the WT (panels (a)

and (d)), Ts65Dn (panels (b) and (e))), and TgDyrk1A (panels (c) and (f)) morphologies. Pan-

els (a-c) correspond to simulations with unperturbed recurrent inhibition, and panels (d-f)

correspond to recurrent inhibitory synapses reduced to 0.3 of the original value.

(PDF)

S5 Fig. Gamma activity dynamics corresponding to selected fabricated morphologies. (a-d)

Raster plots and mean firing rate of the pyramidal (black) and inhibitory interneurons (red)

for network topologies generated with different values of the SCP scaling parameter α and the

scaling of the mean dendritic tree size with respect to WT β. Rest of the parameters as in Fig 5.

(e,f) Average power spectra of the LFP signal corresponding to Fig 5 for specific values of α
and β.

(PDF)

S1 Movie. Simulation of the model corresponding to WT morphology. Top: spatial repre-

sentation of the cortex slice model. Each circle represents a neuron, whose spikes are marked
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with red (excitatory neurons) and blue (inhibitory neurons) for a short time interval. Bottom:

Time series of the average firing rate of excitatory (red) and inhibitory (blue) neurons. Simula-

tion parameters as in Fig 4(a) (λ = 9 kHz).

(MP4)

S2 Movie. Simulation of the model corresponding to Ts65Dn morphology. Top: spatial

representation of the cortex slice model. Each circle represents a neuron, whose spikes are

marked with red (excitatory neurons) and blue (inhibitory neurons) for a short time interval.

Bottom: Time series of the average firing rate of excitatory (red) and inhibitory (blue) neurons.

Simulation parameters as in Fig 4(a) (λ = 9 kHz).

(MP4)

S3 Movie. Simulation of the model corresponding to TgDyrk1A morphology. Top: spatial

representation of the cortex slice model. Each circle represents a neuron, whose spikes are

marked with red (excitatory neurons) and blue (inhibitory neurons) for a short time interval.

Bottom: Time series of the average firing rate of excitatory (red) and inhibitory (blue) neurons.

Simulation parameters as in Fig 4(a) (λ = 9 kHz).

(MP4)
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