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Abstract

Spatiotemporal oscillations underlie all cognitive brain functions. Large-scale brain models,

constrained by neuroimaging data, aim to trace the principles underlying such macroscopic

neural activity from the intricate and multi-scale structure of the brain. Despite substantial

progress in the field, many aspects about the mechanisms behind the onset of spatiotempo-

ral neural dynamics are still unknown. In this work we establish a simple framework for the

emergence of complex brain dynamics, including high-dimensional chaos and travelling

waves. The model consists of a complex network of 90 brain regions, whose structural con-

nectivity is obtained from tractography data. The activity of each brain area is governed by

a Jansen neural mass model and we normalize the total input received by each node so it

amounts the same across all brain areas. This assumption allows for the existence of an

homogeneous invariant manifold, i.e., a set of different stationary and oscillatory states

in which all nodes behave identically. Stability analysis of these homogeneous solutions

unveils a transverse instability of the synchronized state, which gives rise to different types

of spatiotemporal dynamics, such as chaotic alpha activity. Additionally, we illustrate the

ubiquity of this route towards complex spatiotemporal activity in a network of next generation

neural mass models. Altogehter, our results unveil the bifurcation landscape that underlies

the emergence of function from structure in the brain.

Author summary

Monitoring brain activity with techniques such as electroencephalogram (EEG) and func-

tional magnetic resonance imaging (fMRI) has revealed that normal brain function is

characterized by complex spatiotemporal dynamics. This behavior is well captured by

large-scale brain models that incorporate structural connectivity data obtained with MRI-

based tractography methods. Nonetheless, it is not yet clear how these complex dynamics
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emerge from the interplay of the different brain regions. In this paper we show that com-

plex spatiotemporal dynamics, including travelling waves and high-dimensional chaos

can arise in simple large-scale brain models through the destabilization of a synchronized

oscillatory state. Such transverse instabilities are akin to those observed in chemical reac-

tions and turbulence, and allow for a semi-analytical treatment that uncovers the overall

dynamical landscape of the system. Overall, our work establishes and characterizes a gen-

eral route towards spatiotemporal oscillations in large-scale brain models.

Introduction

The interplay between spiking neurons across the brain produces collective rhythmic behavior

at multiple frequencies and spatial resolutions [1, 2]. This oscillatory neural activity is funda-

mental for proper cognitive function [3, 4], and is reflected in a plethora of spatiotemporal

phenomena in recorded signals [5–8]. At the microscopic scale, computational and mathemat-

ical models have successfully captured some of these emergent properties by analyzing the col-

lective behavior of networks of coupled neurons [1, 9–11]. In larger scales, the task becomes

increasingly challenging, as one needs to model several populations of neurons, which

increases the mathematical complexity and the computational cost of the problem. Mesoscale

neural-mass models (NMMs) allow to overcome this situation by capturing the neural activity

of large numbers of neurons with a few equations [12–17].

Recent advances on neuroimaging allow to characterize the structural organization of the

brain as a complex network [18–20]. In this representation, each node of the network corre-

sponds to a brain region composed of densely inter-connected neurons, and edges across

nodes represent pairwise interactions across distant regions. Combining NMMs with connec-

tomics data one can create large-scale brain models whose dynamical properties reflect the

principles underlying macroscopic neural activity [21–24]. This framework has been used,

for instance, to unveil the nature of resting-state fluctuations [25–30], investigate the relation

between structural and functional connectivity [31–35], and characterize transitions between

brain states [36–39]. In clinical applications, large-scale brain models allow for studying mac-

roscopic aspects of neurophatologies such as epilepsy or Alzheimer disease [40–43], and simu-

late the use non-invasive brain stimulation protocols for potential treatments [44, 45].

Despite all this progress, many aspects about the mechanisms through which large-scale

brain models reproduce macroscopic neural dynamics are still unknown. For instance, synap-

tic delays between distant regions [25, 46], noise [25, 29], and heterogeneities [28] are usually

acknowledged as a source of dynamical complexity. Nonetheless, spatiotemporal behavior can

also arise from homogeneous deterministic systems with instantaneous interactions [30, 35,

44]. In particular, Forrester et. al. [35] recently investigated the dynamics of a large-scale brain

model composed of weakly-coupled Jansen’s NMMs. By means of a phase-reduction approxi-

mation, they unveil phase-locked states emerging from a instability of the synchronized state

(see also [33]). For arbitrary coupling values, however, bifurcation studies of whole-brain net-

works are rather limited to numerical investigations [30, 44]. Other studies show that systems

of NMMs coupled through simplified network topologies might display travelling waves and

even chaotic dynamics [47–50]. Whether these results translate to irregular brain networks

remains, so far, unexplored.

In this paper we characterize the onset of spatiotemporal dynamics in a simple large-scale

brain model without heterogeneities, noise, nor delays. In close analogy to pattern-formation

mechanisms in reaction-diffusion systems [51–55], coupling among brain regions alone is
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enough to spontaneously destabilize an underlying synchronized state, thereby generating

complex oscillatory behavior. Our analysis consists of two parts: First we show that, given a

common normalization on the incoming input of each region [56, 57], the network possesses

an invariant homogeneous manifold, i.e., a set of states in which the behavior of each node is

identical across all the network. These states are described by a low-dimensional system: a self-

coupled version of the NMM used for the evolution of each brain region. Bifurcation analysis

of the system reveals how different system parameters modify the onset of synchronized oscil-

latory states within the manifold.

Second, we employ the Master Stability Function (MSF) formalism [58–62] to investigate

the stability of the homogeneous states to heterogeneous perturbations. The synchronized

oscillatory solution of the system turns out to be transversally unstable in a large region of

parameter space, giving rise to complex spatiotemporal dynamics including travelling waves,

multistability, and high-dimensional chaos.

In order to illustrate the ubiquity of this mechanism, we mainly use the Jansen NMM for

the single-node dynamics [15, 16, 63], but also briefly review the onset of chaotic dynamics

using a next generation NMM [17]. Moreover, we also show that, even when the normalization

condition is not fulfilled, the bifurcation diagram of the system remains similar to that of the

simplified model. Our work extends previous findings on weakly-coupled NMMs [33, 35] and

simplified network topologies [47–50] to a comprehensive characterization of the emerging

spatiotemporal behavior.

Results

The large-scale brain model

We build a large-scale brain model using a structural connectivity (SC) network comprised of

N = 90 brain regions defined by the Automated Anatomical Labeling parcellation (AAL-90)

[64], which includes 76 cortical and 14 subcortical regions. Each brain region is represented

by a network node, and pairwise interactions between regions are given by a row-normalized

connectivity matrix ~W ¼ ð~wijÞ where i, j = 1, . . ., N. The connection weights ~wij are non-nega-

tive quantities that indicate the synaptic strength (average number of connections) from region

j to region i, and have been obtained from tractography data from 16 human subjects (see [65]

and also Methods). Although networks obtained from DTI are usually symmetric prior row-

normalization, our approach can also be applied to asymmetric networks (see Methods).

In order to model the dynamics of each brain region we use, for most of the paper, Jansen’s

model for a cortical column [15, 16, 63]. According to this model, the behavior of each brain

region is given by a system of six ordinary differential equations (Eq (9) in Methods) that

account for the interactions between a population of excitatory pyramidal neurons (PNs),

a population of inhibitory interneurons (INs), and recurrent connections within pyramidal

neurons (rPNs). Within each region, the PNs receive two sources of external input: a baseline

firing rate p, which we assume constant and identical across the network, and the incoming fir-

ing rates from the PNs of other brain regions, modulated by a coupling parameter �. Hence,

long range connections established by the structural connectivity matrix are all assumed excit-

atory, whereas inhibition acts only locally within each network node.

Overall, we obtain a large-scale brain model composed of 90 × 6 = 540 ODEs (see Eq (10)

in Methods). Despite its high dimensionality, this system is relatively simple to analyze, as it

does not include noise nor time delays and its parameters are assumed to be identical across

brain regions. Similar large-scale brain models based on the Jansen system have been analyzed

in previous works, the main difference being the connectivity data used for the underlying
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network topology [35, 44]. Our work extends the results of these previous studies, providing a

comprehensive bifurcation landscape of the network.

Bifurcation diagram

Following a customary approach in the literature [30, 33, 35, 44, 45, 56, 57], our definition

of the structural connectome matrix ~W establishes that all network nodes receive the same

amount of input, i.e.,
PN

j¼1
~wij ¼ 1 for all i = 1, . . ., N. This condition ensures that the system

has homogeneous (uniform) states, i.e., states in which all network nodes evolve identically. If

the system is initialized in such a state, it will remain there forever unless perturbed: mathe-

matically speaking, these states lie on an invariant manifold. The existence of homogeneous

solutions does not prevent the existence of heterogeneous states, in which the trajectories of dif-

ferent nodes evolve differently. If a homogeneous state proves to be unstable to arbitrary (het-

erogeneous) perturbations, complex spatiotemporal dynamics might arise.

In this section we investigate the homogeneous states of the large-scale brain model system-

atically, as a means to unveil the emergence of non-trivial heterogeneous patterns. This analy-

sis requires two steps: First, we identify the homogeneous states of the system and their

stability to uniform perturbations, i.e. we study the homogeneous invariant manifold of the

system. Then, we analyze the stability of these states to arbitrary perturbations using the Mas-

ter Stability Function (MSF) formalism [58].

Dynamics of the homogeneous invariant manifold. If all brain regions behave identi-

cally, then each network node follows the dynamics of the self-coupled Jansen model given by

Eq (18) in Methods. This system defines the homogeneous invariant manifold of the system,

hence its stable states correspond to those homogeneous states of the full model (Eq 10) that

are stable to uniform perturbations. In this section we analyze the dynamics of Eq (18) alone.

Therefore, the term stability in this section refers to stability within the homogeneous manifold

only. We uncover the different attractors of the self-coupled system with the help of the bifur-

cation analysis software AUTO-07p [66], using the common external input p� 0 and the cou-

pling strength �� 0 as control parameters. Despite both parameters being positive quantities,

we also include negative values of p in the bifurcation diagrams in order to reveal the entire

bifurcation structure.

We start by recalling the dynamics of the uncoupled Jansen model (for details readers can

refer to [63]). Fig 1(a) shows the value of the mean membrane potential of the PN population v
corresponding to different solutions of system (18) for fixed � = 0 and varying baseline input p.

For small positive p, two stable steady states coexist (dark pink curves), each of them leading to

a different type of stable periodic state (black curves) upon increasing the baseline input. First,

the high-activity fixed point (upper pink branch) undergoes a supercritical Hopf bifurcation

(HBþ
1

) at p� 90, which corresponds to the onset of alpha oscillatory activity (�10Hz). This

periodic state persists until p� 315, where it vanishes through a second supercritical Hopf-

bifurcation (HBþ
2

) leading again to a stable high-activity steady state. Second, the low-activity

stationary state for p small (lower dark pink branch) vanishes through a saddle-node in a

invariant cycle (SNIC) bifurcation for p� 114, giving rise to finite amplitude oscillations at a

theta range (�4Hz). This spiky oscillatory activity vanishes at p� 137 through a fold (or sad-

dle-node) bifurcation of limit-cycles (FLC1).

The addition of coupling (� > 0) modifies this bifurcation scenario. For instance, Fig 1(b)

shows the bifurcation diagram for � = 4. The figure shows that coupling eliminates the super-

critical Hopf bifurcation HBþ
1

, so that for small values of p only the low-activity fixed point is

stable. As in the uncoupled case, this steady state vanishes at p� 111 through a SNIC bifurca-

tion. However, now the branch of oscillatory states arising from the SNIC connects both the
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theta (111 ≲ p≲ 150) and alpha (134≲ p≲ 351) frequency bands, which coexist in a small

region bounded by two FLCs. Hence, for small but non-zero coupling the alpha oscillatory

state emerges through the fold of cycles FLC2 instead of a Hopf bifurcation, and, as in the

uncoupled case, it disappears through the HBþ
2

supercritical Hopf bifurcation for large input

(p� 351).

Further increase of � leads to a total disappearance of bistability between oscillatory states.

Fig 1(c) shows an example of this situation for � = 50. Upon increasing the external input p,

the low activity fixed point leads to finite-amplitude oscillations through the SNIC bifurcation

(p� 84.68). This oscillatory state becomes the only attractor for a wide range of p, until it van-

ishes at the supercritical Hopf bifurcation HBþ
2

(p� 330), beyond which trajectories converge

to the high-activity fixed point. The frequency of this single stable oscillatory state (see Fig

1(d)) shows two distinct plateaus that dominate for most values of p, located at around the

theta (3–5Hz) and alpha (7–9Hz) levels.

Overall, the diagrams in Fig 1(a) and (c) reveal a change on the onset of alpha oscillatory

activity, together with a loss of bistability as � increases. These changes can be better under-

stood from the two-parameter bifurcation analysis shown in Fig 1(e) and (f). These diagrams

illustrate the different regions of stability of Eq (18) for varying p and �, with panel (f) showing

a zoomed version of panel (e) for small coupling. The red continuous curve in Fig 1(e) and (f)

corresponds to the Hopf bifurcation HBþ
1

giving raise to alpha activity for low values of � (see

Fig 1(a)). This bifurcation becomes subcritical (dashed red line) through a Bautin (or general-

ized Hopf) codimension-2 bifurcation at p� 40, �� 1.8. At this point, the FLC2 appears

Fig 1. Bifurcation diagrams of the homogeneous states subject to uniform perturbations. (a-c) One-parameter bifurcation diagrams of Eq (18)

obtained by varying p and with fixed � = 0 (a), � = 4 (b), and � = 50 (c). Colored curves indicate stable fixed points (dark pink), unstable fixed points

(light pink), extrema of stable limit-cycles (black), and extrema of unstable limit-cycles (grey). Dashed black vertical lines indicate the relevant

bifurcation points cited in the text. (d) Frequency of the stable oscillatory state by varying p and with fixed � = 50. (e,f) Two-parameter bifurcation

diagram of Eq (18) depending on the external input p and the coupling strength �. Panel (f) is a zoomed version of (e). Curves indicate different

bifurcation types: supercritical Hopf (HB+, continuous red), subcritical Hopf (HB−, dashed red), saddle-node (SN, brown), saddle-node in a invariant

cycle (SNIC, dark blue), saddle-node of limit-cycles (FLC, green), and homoclinic (Hom., orange) The light-blue region indicates the existence of a

single periodic state. The light-blue region with stripped black pattern indicates the coexistence between a limit-cycle and a fixed point. The dark-blue

region indicates the coexistence of two stable periodic states. All results obtained by analyzing the system of Eq (18) using the bifurcation analysis

software AUTO-07p (scripts for one-parameter bifurcations available at www.github.com/pclus/transverse-instabilities).

https://doi.org/10.1371/journal.pcbi.1010781.g001
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(green line), and joints the FLC1 at a cusp (p� 165, �� 10) at which both bifurcations vanish.

Therefore, within the dark-blue region delimited by the two FLCs (green curves) and the

SNIC bifurcations (dark-blue curve) two stable oscillatory states coexist. Beyond this region,

and for a wide range of � values, the dynamical landscape of the system becomes simpler and

coincides with that shown in Fig 1(c) (see Fig 1(e) for � = 50). This scenario changes for very

high coupling, when the SNIC bifurcation turns to a SN through a saddle-node separatrix loop

(SNSL) codimension-2 bifurcation [67]. From this point, a homoclinic bifurcation (Hom.)

bounds the region of oscillatory dynamics, which appear for arbitrary low p. Parallel to the

homoclinic line, two additional branches of FLC appear, leading to a very narrow region of

oscillatory bistability. Since they have a minor effect on the overall bifurcation landscape,

we do not depict them in Fig 1(e). Finally, further increase of � ceases all oscillatory activity

through the HBþ
2

(red continuous curve).

In summary, the dynamics of the system within the homogeneous invariant manifold can

be divided in three main regions:

• Low activity fixed point, represented by the white region to the left of the SNIC bifurcation

(dark blue curve) in Fig 1(e).

• High activity fixed point, represented by the white region to the right and above of the HBþ
2

line (red curve) in Fig 1(e).

• Oscillatory activity at the theta or alpha ranges (or bistability between both), mostly delim-

ited by the HBþ
2

and the SNIC bifurcation curves (light blue shadowed region) in Fig 1(e).

Overall, the bifurcation analysis of Eq (18) uncovers the rich dynamical repertoire of the

homogeneous manifold of the full system (Eq 10). Nonetheless, we remark again that this anal-

ysis only concerns homogeneous states, i.e., the different regions of stability and instability

outlined so far only assume perturbations that act identically at each network node. In the next

section we assess the stability of the homogeneous solutions to heterogeneous perturbations.

Transverse stability. The analysis of system (18) discussed above reveals the loci of all

homogeneous states of the network model that are stable to uniform perturbations. In order to

determine the stability of these states to arbitrary non-uniform perturbations, we follow a well-

established approach that can be applied to either fixed points or periodic states (see Methods).

This technique, analogous to the one used in the study of Turing bifurcations in complex net-

works [54, 68, 69], consists on decomposing an arbitrary perturbation vector on the basis

given by the eigenvectors of a suitable matrix representing the way the nodes are coupled. This

provides a dispersion relation for the growth rate of the perturbations. In our case, instead of

the Laplacian matrix used in diffusively coupled systems, we diagonalize the normalized struc-

tural connectivity matrix ~W . As we will see, stable fixed points in the homogeneous manifold

remain always stable to heterogeneous perturbations in the full-model. Hence, our focus will

be on the stability of the limit-cycle solutions, for which this decomposition technique is

known as the Master Stability Function (MSF) [58, 59, 61].

Fig 2(a) shows the first 5 eigenvectors of ~W in terms of their components across the 90

brain regions. The first eigenmode is homogeneous, and its associated eigenvalue is always

Λ1 = 1 (see Methods). Perturbations along this direction are the ones already accounted by the

analysis of Eq (18) in the previous section. The subsequent eigenmodes are heterogeneous and

their associated eigenvalues are between -1 and 1 (see Methods). Perturbations along these

directions are transverse to the homogeneous invariant manifold. Despite stemming from an

irregular network topology, the eigenvectors exhibit a well defined spatial structure, which

can be traced back to the well-known exponential decay of inter-region connectivity with
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Euclidean distance observed in brain connectivity data obtained with diffusion tensor imaging

(DTI) [70, 71].

Following the technique explained in Methods, we found that no transverse instabilities

arise from the homogeneous fixed points. Therefore next we focus on the stability of the limit-

cycle solutions by means of the Master Stability Function (MSF) [58, 59, 61]. The growth rate

of an infinitesimal perturbation of a periodic state is given by the real part of the corresponding

Floquet exponents [72], which we denote by μ. The MSF provides the largest growth rate μ of a

perturbation acting along each eigenmode Φ(α) as a function of its associated eigenvalue Λα,

ma ¼ MSFðLaÞ : ð1Þ

This relation is analogous to dispersion relations in spatially extended systems, where the

growth rate of a perturbation is given as a function of the perturbation wavenumber [55]. In

the Jansen model, the MSF needs to be computed numerically (see Methods section for a

detailed explanation of its derivation and numerical computation).

Fig 2(b) shows the MSFs of the homogeneous limit-cycle solution for different p values.

Each circle indicates the real part of the largest Floquet exponent corresponding to a

Fig 2. Transverse instabilities of oscillatory states. (a) First 5 eigenvectors of ~W in a spatial representation of the brain (superior view). Each network

node has been colored according to their contribution to the corresponding eigenvector ΦðaÞ ¼ ð�ðaÞ
1
; . . . ; �

ðaÞ

N Þ. (b) Master Stability Function of system

(10) showing the dependence of the largest Floquet exponent μ with respect to the structural connectivity eigenvalues Λα for three different values of the

input p. � = 50 in all cases. Circles correspond to the eigenvalues of ~W , whereas black curves are obtained by continuously tuning Λ. (c,d) Results from

numerical simulations of Eq (10) with (c) p = 280 and � = 50 and (d) p = 210 and � = 50. (e) Complete bifurcation diagram of the homogeneous states.

Colors of lines and regions as in Fig 1(e) and (f), with the region of transverse instability (i.e., μ2 > 0) shaded in pink and delimited with a black curve.

Black circles correspond to numerical simulations in which hσi> 10−5. Simulations initialized close to a homogeneous state. (f,g) Bifurcation diagram

obtained from direct simulations of the system with initial conditions close to homogeneous (f) and random (g). Continuous curves as in Fig 1(e) and

(f). Regions colored according the dynamical classification given by the two largest Lyapunov exponents (see Methods).

https://doi.org/10.1371/journal.pcbi.1010781.g002
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perturbation applied along the αth eigenvector computed according to the MSF. Since we are

considering a stable limit-cycle solution given by the analysis of system (18), the largest growth

rate corresponding to the uniform eigenvector (i.e., Λ1 = 1) is μ1 = 0. The other exponents

might be positive or negative depending on both the system parameters and Λα. For instance,

for p = 280 (green circles) the dispersion relation is negative for all the structural eigenvalues

−1< Λα < 1. Therefore, in this case we expect small inhomogeneous perturbations of the

homogeneous state to decay exponentially. In contrast, for p = 210 (blue circles) some of the

connectivity matrix eigenvectors have positive growth rates μα, thus small perturbations

should give rise to heterogeneous patterns. Indeed, Fig 2(c) and 2(d) show the results of inte-

grating numerically Eq (10) for p = 280 and 210, respectively. The initial conditions corre-

spond to a uniform state plus a small random perturbation. In agreement with the results

given by the stability analysis, after a short transient (not shown), the dynamics for p = 280

falls back to the homogeneous state, whereas a heterogeneous spatiotemporal pattern arises for

p = 210.

The MSF dispersion relations represented in Fig 2(b) show that the positive growth rates

appear first through the second largest structural-connectivity eigenvalue, Λ2. We thus exten-

sively analyze the loci of unstable directions by checking whether μ2 has a positive real part for

the entire region of existence of oscillatory activity. Fig 2(e) displays the region where μ2 > 0

(purple) superimposed on the bifurcation diagram of the homogeneous manifold, calculated

in the previous section and shown originally in Fig 1(f). Remarkably, the region of transverse

instability occupies a large portion of the parameter space. Moreover, the corresponding values

of � cover a range comparable to the other coupling parameters of the system, C1, . . ., C4 2 [0,

135].

In order to validate the emergence of heterogeneous dynamics in the system we perform

numerical simulations of system (10) for different values of p and �, starting from initial condi-

tions close to a homogeneous state. At each time step we compute the standard deviation

across network nodes,

sðtÞ≔
1

N

XN

i¼1

ðviðtÞ � �vðtÞÞ2
" #1

2

where �vðtÞ ¼
1

N

XN

i¼1

viðtÞ : ð2Þ

This quantity vanishes in the homogeneous states, whereas it is positive in heterogeneous

states. Black circles in Fig 2(b) indicate the parameter values for which hσ(t)i> 10−5 in the sim-

ulations, showing a complete overlap with the results coming from the linear stability analysis

(purple region in the figure).

Finally, we characterize the type of dynamical states arising in the region of transverse insta-

bility, by computing the two largest Lyapunov exponents (LE, see Methods), λ1 and λ2, in

independent numerical simulations with varying p and �. Using this tool we can classify the

attractors of the system depending on the sign of the two exponents (see Methods). Fig 2(f)

and 2(g) show the resulting numerical bifurcation diagrams corresponding to initial condi-

tions close to a homogeneous state (Fig 2(f)) or entirely random initial conditions (Fig 2(g)).

In both cases the region of transverse instability can be roughly divided in two parts: one

dominated by periodic heterogeneous oscillations (large �, blue), and one displaying chaotic

dynamics (small �, red) with at least two unstable directions. Additionally, simulations initial-

ized at random (Fig 2(g)) show that the chaotic regime extends much beyond the transverse

instability region, thus uncovering a coexistence region between spatiotemporal chaos and

homogeneous states. In the next sections we investigate the properties of these different

dynamical regimes in detail.
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Periodic travelling waves

The simplest instance of heterogeneous dynamics in system (10) is a periodic regime (blue

region in Fig 2(f) and 2(g)). In this regime, the dynamics of each brain region is purely peri-

odic, but with a non-zero phase difference between regions, i.e., there is phase-locking between

nodes. Here we reveal that a multiple of such states might exist for a single choice of parameter

values.

Fig 3(a) and 3(b) show the difference between each node’s phase ϕj and the collective phase

C (see Methods) for two simulations with fixed p = 230 and � = 50 and different initial condi-

tions. In both cases the initial conditions are set close to the homogeneous (unstable) limit-

cycle, plus a small random perturbation. The first case (simulation A, Fig 3(a)) reveals a wave

pattern that travels from the left to the right hemisphere, whereas the second (simulation B,

Fig 3(b)) displays a travelling wave that goes from the parietal to the frontal region, (see also S1

and S2 Movies).

Following [30] we obtain the direction and speed of the wave propagation by means of con-

strained natural element differentiation (see Methods, and also [30, 73]). The resulting vector

field (Fig 3(c) and 3(d)) provides better indication on the specific type of pattern shown by

each simulation, together with the wave propagation speed of each region. These propagation

speeds are heterogeneous in space, as expected from the irregular brain connectome, with val-

ues ranging between 1 and 8m/s (see Fig 3(e)), in close agreement to results from non-invasive

recordings, but one order of magnitude larger than those observed in invasive recordings

[74]. This disagreement might be due to the fact that ours is a model of inter-cortical wave

Fig 3. Multistability between different types of periodic travelling waves. (a,b) Difference between each node’s phase ϕj and the collective phaseC

corresponding to simulations with p = 230 and � = 50, in the spatial representation of the brain network (from left to right: frontolateral, superior, and

frontal views). Panels (a) and (b) correspond to two different initial conditions. (c,d) Propagation direction vectors ζj/zj corresponding to the phase

patterns of (a) and (b). Color indicates the propagation speed νj. (e,f) Swarm plot of propagation speed zj (e) and local polarization aj (f). The circles

correspond to individual brain regions. Black squares show the average over the entire network, and error bars indicate standard deviation. (g)

Contribution of each structural connectivity eigenmode to the growth rate of the perturbations in simulations A and B (see Eq (29) in Methods).

https://doi.org/10.1371/journal.pcbi.1010781.g003
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propagation, whereas it has been argued that travelling waves in the scalp are mediated by an

intra-cortical mechanism [74]. In fact, travelling waves in the cortex are usually observed not

at the whole-brain level but localized in smaller regions [5, 75, 76]. A reconciling approach

could consist on applying the same analysis in a model closer to experimental conditions,

based on short-range coupled NMMs in a small section of the cortex.

Vector fields in Fig 3(c) and 3(d) show coherent spatial propagation patterns visible to the

naked eye. Nonetheless, in the model, the spatial support is discrete and the coupling among

nodes is set by a complex network, thus local irregularities or outliers should be expected. We

quantify the local directional agreement among neighbouring propagation vectors by means

of a measure of local polarization aj (see Eq (34) in Methods). Fig 3(f) shows the average (black

squares) and individual (small circles) polarizations for simulations A and B. In both cases

the different velocity vectors display a good agreement with the propagation directions of its

neighbouring regions, as indicated by aj being close to 1. Nonetheless, simulation B presents a

few outliers, which we have checked to correspond to parietal brain regions close to the source

of the wave, where the pattern spreads in many different directions.

The well-structured wave patterns in Fig 3(a) resemble some of the eigenmodes given by

the diagonalization of ~W depicted in Fig 2(a). Indeed, we expect the eigenmodes associated

to positive Floquet exponents in the MSF to have a larger role on the final state of the system.

Nonetheless, the random perturbations used to initialize the system might be more localized

along a specific direction, making that direction more prominent among other unstable

modes. Fig 3(g) shows this specific contribution for simulations A and B as approximated by

Eq (29) (Methods). The perturbation used in A is mostly being expanded through the second

eigenvector (see Fig 2(a)), which shows a left-to-right division in close agreement to the

observed pattern. Instead, perturbation B is mostly being expanded according to the third

structural eigenvector, leading to the back-to-front wave propagation.

Chaotic wave dynamics

Numerical analysis displayed in Fig 2(f) and 2(g) shows a large region of chaotic dynamics.

Here we analyze an instance of such states. Lyapunov exponents are a common tool to charac-

terize the complexity of a chaotic regime (see Methods) [77]. We set parameter values to

p = 170 and � = 20, for which at least 5 Lyapunov exponents are positive, an indication of high-

dimensional chaos. Single nodes still oscillate at the alpha range (�9Hz), however, the phase

differences between brain areas change over time. Fig 4(a) shows consecutive time snapshots

of the difference between the phase of each region ϕi and the collective phase C, with the cor-

responding propagation direction vector field depicted in Fig 4(b). Such phase gradient pre-

serves certain levels of locally coherent structure, although the scenario looks much more

complex than the periodic travelling waves presented in the previous section (see also S3

Movie).

In order to understand the main features of these chaotic patterns, we first analyze the level

of phase synchrony in the network. By observing the time evolution of the phase differences

(see Fig 4(c)), we can appreciate that the dynamics alternates between periods in which all

nodes evolve with similar phases (all phase differences are distributed around zero), with peri-

ods in which a group of nodes (but not all) lose synchrony. Such type of breathing dynamics

can be monitored by means of the Kuramoto order parameter R (see Methods for a definition).

This can be seen in Fig 4(d), which shows the irregular oscillatory activity of R. These results

indicate that the level of collective synchronization in the network itself displays chaotic

behavior. The regularity of both the phase differences and R can be quantitatively analyzed by

means of their corresponding autocorrelation functions (Fig 4(e)). The quick decay of both
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autocorrelations illustrates the short-time scale of the dynamics, which agrees with that indi-

cated by the inverse of the largest Lyapunov exponent (1/λ1’ 0.93s). Hence, overall, the

synchronization patterns in the network, either pairwise or collective, are mediated by the

spontaneous appearance of a slow modulation of the alpha activity.

We next characterize this chaotic wave propagation using different measures. Fig 4(f)

shows the average and standard deviation of the propagation speed for each node. The velocity

range is similar to that of the periodic waves (1–8m/s), with a few outliers with larger velocities.

These outliers are not present on the time-averaged distribution (right panel in Fig 4(f)), thus

indicating that they correspond to sporadic fluctuations. The local polarization (Fig 4(g))

exhibits a similar behavior: Instantaneous snapshots of aj display a large variability on the

phase coherence across regions, but with a time average concentrated around haji � 0.5 for all

nodes. Finally, we quantify the change of the propagation direction over time using the mean

resultant length ρj = khζj/zjik (see Methods), which measures the directional coherence of

Fig 4. Spatiotemporal dynamics of the chaotic state. (a) Snapshots of the phase differences ϕj −C between each node’s phase and the collective phase

for a simulation with p = 170, � = 20. (b) Snapshots of the propagation directions colored according to the corresponding speed. (c) Time series of the

phase difference ϕj −C for 10 nodes (grey curves), with an individual brain region highlighted with a red thick line. (d) Time evolution of the

Kuramoto order parameter R. (e) Autocorrelation of R (blue curve) and average correlation of the phase differences (red curve), with the corresponding

standard deviation shown as a light red shadow. (f-h) Swarm plot of instantaneous propagation speeds zj (f), local polarization aj (g), and directional

coherence ρj (h), corresponding to the snapshots in (a). Circles show the values of individual brain regions, black squares indicate average value, and

error bars show standard deviation.

https://doi.org/10.1371/journal.pcbi.1010781.g004
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single nodes, being 0 for completely random directions, and 1 for quenched directionality (as

in periodic travelling waves). The low values of ρj in Fig 4(h) indicate that most nodes propa-

gate their dynamics to statistically almost any direction over the entire simulation. Altogether,

this is a manifestation of short-lived and locally coherent wave dynamics, which travel through

the network without a well-identified pattern.

Onset and multistability of irregular dynamics

In this section we characterize the emergence the spatiotemporally chaotic dynamics displayed

by our large-scale brain model, as well the effect of transverse instabilities on the frequency of

the oscillations. We perform different sets of numerical simulations for fixed � = 50 and vary-

ing p, starting from random initial conditions. Fig 5(a) shows the 5 largest Lyapunov expo-

nents of the system as p is varied (colored thin lines, left axis). The transverse instability takes

place at p’ 265.5 (right-most vertical dashed line in the figure), and the first instances of

chaos emerge for values of p smaller than p’ 184.5 (first vertical dashed line in Fig 5(a)).

Between these two values, the behavior of the system is either periodic (single zero LE) or qua-

siperiodic (two LEs equal to zero). Chaotic dynamics appear rather abruptly from the quasipe-

riodic states as p is decreased.

We therefore conclude that the route to chaos is that of a torus breakdown [78, 79]. Exam-

ples of periodic, quasiperiodic, and chaotic dynamics are displayed in Fig 5(b). In this panel,

each plot shows the time series of the sample mean voltage, �v ≔ 1

N

PN
j¼i vi, corresponding to

simulations with p = 180 (top), 177 (middle), and 175 (bottom). The quasiperiodic state (mid-

dle row of Fig 5(b)) presents an additional slow frequency on top of the alpha activity, which

Fig 5. Onset of chaotic dynamics and multistable dynamics. (a) Five largest Lyapunov exponents (thin coloured lines, left axis) and Kaplan-Yorke

dimension DKY (black thick line, right axis) for � = 50 and varying p, as obtained from direct integration of system (10). Simulations at each value of p
were initialized at random. Vertical dashed lines indicate the onset of transverse instability (right, p’ 265.5) and the onset of chaos (center, p’ 184.5).

(b) Time series of the mean-field voltage of the pyramidal neurons, �v, for p = 180 (top), 177 (middle), and 175 (bottom) and fixed � = 50. (c) Peak

frequency of each network node. The black line shows the oscillation frequency of the underlying homogeneous state, as in Fig 1(f). Dots indicate the

frequency for which the power spectral density is maximal for each node. Results from 5 simulations superimposed in gray, with one replicate

highlighted in red. (d) Activity pattern of each node obtained from a simulation with p = 70 and � = 50. Only a time span of 2 seconds shown. (e) Power

spectral density of each network node as obtained from the same simulation as in (d).

https://doi.org/10.1371/journal.pcbi.1010781.g005
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then breaks into faster irregular modulations of the alpha rhythm at the chaotic state (bottom

row of Fig 5(b)).

After the onset of chaotic dynamics at p’ 265.5, further decrease of p leads to consecutive

Lyapunov exponents becoming positive, thus increasing the dimensionality of the chaotic

attractor. In fact, although we only display 5 Lyapunov exponents, many more directions

become unstable. We estimate the (fractal) dimension of the chaotic attractor in terms of the

Kaplan-Yorke dimension, DKY [77, 80] (see Methods), which quantifies the effective number

of degrees of freedom that characterizes the irregular dynamics (black thick line in Fig 5(a),

right axis). This analysis reveals the high-dimensionality of the chaotic regime, which can

reach up to 100 for low p values. For even lower p the complex oscillatory state suddenly van-

ishes, and the dynamics converge to the stable homogeneous fixed point.

Does the onset of heterogeneous states modify the oscillatory frequency of the system?

To answer this question we analyze the leading frequency of each network node upon vary-

ing p. The result is shown in Fig 5(c), where dots indicate the peak frequency of each brain

area, as determined by the maximum of the power spectral density in each case. For each

value of p, results from 5 different simulations are shown in gray, with results from a single

randomly chosen simulation depicted in red. Before the synchronous alpha activity loses

stability (right-most vertical dashed line in Fig 5(c), p> 265.5), all nodes in all simulations

evolve according to the frequency given by the analysis of the self-coupled system (18),

obtained in Fig 1(d) and indicated by a black curve. Between the transverse instability of

the homogeneous state and the emergence of chaos (184.5 � p � 265.5, area between the

two vertical dashed lines in the figure), all brain areas in a given simulation oscillate with

the same leading frequency, even though different sets of simulations fall in different attrac-

tors with slightly different oscillation frequencies (due to multistability between different

types of periodic states, as at the case analyzed in Fig 3). In the chaotic regime (p� 184.5)

this situation changes, and within each simulation different nodes might oscillate at differ-

ent peak frequencies, which cover a broader range as the chaotic state increases dimension-

ality. In any case, it is worth highlighting that oscillatory activity remains at the alpha range,

around 9Hz, for most values of p. This frequency range differs from that of the underlying

homogeneous state, which transitions to the theta regime and finally vanishes (see black

curve).

As shown in Fig 5(c), vestiges of theta activity exist only for values of p close to the steady-

state regime (e.g., p’ 70). In those cases, brain regions oscillate intermittently between the

alpha and theta frequency bands. Fig 5(d) shows an example of such multifrequency dynamics

for p = 70 and � = 50, with the corresponding power spectra displayed in Fig 5(e). Similar mul-

tifrequency dynamics are usually associated to the role of stochastic input inducing jumps

between the two oscillatory states of the uncoupled Jansen model [81, 82]. Here instead, it is

the collective deterministic chaos what causes a two-peak spectrum for single nodes.

Non-normalized connectivity

All results shown so far stem from the row-normalized connectivity matrix ~W given by Eq

(14), which allows for a semi-analytical treatment of the model. Next, we turn to a numerical

analysis of the model using the non-normalized network connectivity W directly as obtained

from the data. In this case one cannot ensure the existence of a homogeneous manifold, and

thus the fixed points and their stability should be assessed by solving a system of 540 nonlinear

equations and analyzing the corresponding Jacobian. Here we avoid such a full stability analy-

sis of the system, since direct simulations are enough to compare with our previous results.
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We analyze numerically Eq (10) using the SC matrix W. Therefore, we replace the input Eq

(11) in Eq (10) by

IiðtÞ ¼ pþ
�

hsi

XN

j¼1

wij Sigm½vjðtÞ� ð3Þ

where hsi is the average node strength, i.e.,

hsi≔
1

N

XN

i¼1

si ¼
1

N

XN

i¼1

XN

j¼1

wij : ð4Þ

The scaling factor hsi−1 ensures that the distribution of incoming connections is centered at 1,

so that the effect of the coupling strength � in the non-normalized model is comparable to that

the row-normalized case studied so far.

Fig 6(a) and 6(b) show the classification of dynamical states as obtained from the two largest

Lyapunov exponents in numerical simulations. The first figure shows results obtained initializ-

ing the system close to a homogeneous state, whereas the second corresponds to random initial

conditions. Continuous lines show the bifurcations of Eq (18) as in Fig 2. The diagrams reveal

a scenario very similar to that of the normalized topology, with a central large region display-

ing different types of oscillatory states bounded by two white regions corresponding to a low-

activity (left) and high-activity (right) fixed points. Also, the presence of hyperchaos (red

region in the plots) is ubiquitous, and shares a small island of bistability with periodic oscil-

latory states which contrasts with the large bistable areas present in the normalized system (Fig

2). Additionally, the non-normalized system displays a large region of quasiperiodicity and a

small island of low-dimensional chaos not present in Fig 2.

Fig 6. Dynamics of the Jansen model with unnormalized connectivity. (a) Numerical bifurcation diagram as obtained from the Lyapunov analysis of

numerical simulations. Initial conditions set close to homogeneous. Continuous lines identical to those of Fig 1(f). (b) Same than (a), but initial

conditions set at random. (c) Time evolution of each network node for p = 320 and � = 50 starting with random initial conditions. (d,e,f,g) Relation

between different measures obtained from numerical simulations for � = 50 and p = 320 (red circles) and p = 170 (blue squares). The corresponding

squared Pearson’s correlation coefficients r2 are displayed in each plot. (d) Correlation between oscillation focus hv(i)i and the underlying unstable fixed

point vðiÞ0 . Dashed vertical lines correspond to the homogeneous fixed points of the normalized system ~W . (e) Correlation between oscillation focus

hv(i)i and node strength si. (f) Correlation between oscillation amplitude σ(i) and node strength si. (g) Correlation between the phase difference ϕi −C
and node strength si. Error bars correspond to temporal standard deviation.

https://doi.org/10.1371/journal.pcbi.1010781.g006
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Despite the quantitative dissimilarities between the dynamical landscapes of the row-nor-

malized and non-normalized systems described above, there is a fundamental difference

between using W or ~W with regard the intrinsic dynamics of the system: In the non-normal-

ized system all states are always heterogeneous. Fig 7(c), for instance, shows a simulation for

parameter values close to the onset of oscillations (p = 320 and � = 50).

This oscillatory state arises from an underlying unstable heterogeneous fixed point that we

obtain by solving the nonlinear fixed point equations of the system (see Methods). Indeed, Fig

6(d) shows that the time averaged mean membrane potential hvi(t)i, is practically identical to

the underlying steady state vð0Þi for large enough p (blue circles). In a chaotic state (p = 170, � =

50, red squares in Fig 6(d)) the center of the oscillations shifts from the fixed point, but the two

quantities still show a high degree of correlation. Remarkably, the heterogeneous unstable

fixed points remain distributed around the homogeneous steady state of the model with nor-

malized connectivity for same parameter values (vertical dashed lines in Fig 6(d)). Hence, the

use of the matrix W does not seem to fundamentally alter the nature of the different steady

states.

Next we study to what extent these oscillatory states depend on the distribution of inputs si.
Fig 6(e), 6(f) and 6(g) show the focus, amplitude, and phase difference of each node plotted

against the node strength for the periodic (blue circles) and chaotic (red squares) cases. First,

the focus of the oscillations follows a direct relation with the input of each node (Fig 6(e)), for

Fig 7. Dynamics of the large-scale brain model composed of NG-NMMs. (a,b) Complete bifurcation diagram of system (36). Panel (b) is a zoomed

version of (a). Continuous lines correspond to the bifurcations of the homogeneous manifold given by Eq (38) obtained with AUTO-07p: saddle-node

on an invariant cycle (SNIC, dark blue), supercritical Hopf (HB+, continuous red), subcritical Hopf (HB-, dashed red), saddle-node (SN, brown), and

homoclinic (Hom., purple). Light blue shaded region indicates stability of the homogeneous gamma activity. Orange shaded region indicates bistability

between homogeneous gamma activity and a fixed point. Pink shaded region indicates the region of transverse instability of the synchronized

oscillations. Black triangle and square in panel (a) indicate the parameter values corresponding to panels (c) and (d) respectively. (c,d) Time evolution

of each node as obtained from a numerical simulation of Eq (36) for � = 30 (c) and � = 40 (d). In both cases ηe = 5.

https://doi.org/10.1371/journal.pcbi.1010781.g007
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both the periodic and chaotic dynamics. Second, the amplitude correlates mildly with the

node strength at the chaotic region (red squares in Fig 6(f)), but appears independent from si
close to the onset of oscillatory activity (blue circles in Fig 6(f)) Finally, Fig 6(g) shows a nega-

tive correlation between the phase difference of each brain region and their corresponding

node strength: Regions with lower input tend to oscillate first, and the hubs tend to be the last.

In the periodic regime (e.g., p = 320) this relation translates to a travelling wave in which oscil-

lations spread from outer to the inner region of the brain (see S4 Movie). In the chaotic regime

(p = 170) the role of the node strength on the dynamics is still prominent (blue squares in Fig

6(g)), although much blurred by the irregular behavior of the system, as shown by the large

error bars (see also S5 Movie).

Overall, the non-normalized network topology adds a new layer of complexity in the

model, as homogeneous states no longer exist. Nonetheless, many features of the dynamics

can be traced back directly to the distribution of node strengths si. Moreover, the agreement

between diagrams in Fig 6(a) and 6(b) and those of Fig 2(f) and 2(g) indicate that the onset of

chaotic dynamics is mostly retained in the row-normalized network topology ~W .

Spatiotemporal chaos in a large-scale brain model with next generation

NMMs

We have seen so far that irregular spatiotemporal dynamics arise in networks of coupled

NMMs from transverse instabilities of oscillatory states. We expect this to be a general mecha-

nism in brain networks. In order to illustrate this ubiquity, we now analyze a large-scale brain

model composed of coupled next generation NMM (NG-NMM). These models are derived

from an exact mean-field theory for quadratic integrate-and-fire neurons, and therefore, the

corresponding firing rate equations can be traced back to the dynamics of single neurons [17].

Here we consider a pyramidal-interneuronal network gamma (PING) setup, in which the local

dynamics within each brain region produces gamma activity through the interplay between

excitatory and inhibitory neurons (see Methods, and also [83]). In order to obtain a bifurcation

diagram, we proceed as we have done above for the Jansen system: first we investigate the

homogeneous manifold of the system, and then apply the MSF formalism.

The manifold of homogeneous trajectories corresponds again to a self-coupled version of

the model (Eq (38) in Methods). Fig 7(a) shows the bifurcation diagram corresponding to

homogeneous trajectories of the system, using as control parameters the external-to-excitatory

baseline input ηe and the coupling strength �. For weak coupling (�� 1) and low ηe the system

remains in a single low-activity fixed point (white area in the plot) corresponding to a state of

asynchronous dynamics. Upon increasing the constant external input ηe, such steady state

gives raise to fast oscillatory activity (blue-shaded area) through a supercritical Hopf bifurca-

tion (red continuous line). For large values of ηe the fixed point recovers stability through a

subcritical Hopf (dashed red curve), giving raise to a bistable state between gamma activity

and asynchrony (orange-shaded area). For even larger values of ηe gamma activity finally van-

ishes through a saddle-node of limit cycles (outside figure range).

As it happened with the Jansen system, increasing � leads to a change on the onset of oscil-

latory activity. Following a typical scenario in oscillatory systems (see, e.g., [84–88]), in a tiny

region of the parameter space (see panel (b)) three codimension-2 bifurcations coexist: a Bog-

danov-Takens (BT), a saddle-node separatrix loop (SNSL), and a cusp of saddle nodes. The

Hopf bifurcation vanishes at a Bogdanov-Takens (BT) point, and a saddle-node separatrix

loop (SNSL) gives raise to a SNIC branch (dark blue line). Therefore, for most values of �,

gamma activity arises through a infinite-period (SNIC) bifurcation. Also, an increase of the

coupling causes the region of bistability between the oscillatory states and the fixed-point to
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increase (orange-shaded area). Overall, homogeneous oscillatory activity –with or without

bistability– dominates the bifurcation diagram. An example of such homogeneous gamma

activity is displayed in Fig 7(c), corresponding to ηe = 5 and � = 30 (black triangle in Fig 7(a)).

By applying the MSF formalism on these oscillatory states, we unveil a region of transverse

instability (pink-shaded region in Fig 7(a)), which emerges for large values of �. As a result,

simulations initialized close to the homogeneous state within this parameter region exhibit

irregular spatiotemporal patterns, as the one depicted in Fig 7(d) (ηe = 5, � = 40 i.e, black

square in Fig 7(a)). Notice that the frequency of the oscillations becomes almost twice as that

of the (unstable) homogeneous state, which in this case is approximately 46Hz. This is a differ-

entiating feature with respect to the Jansen model, in which heterogeneous activity is faster

than that of the underlying homogeneous state, but always close to the typical values displayed

by the model.

Overall, the large-scale brain model with NG-NMMs displays a mechanism towards the

onset of irregular states analogous to the Jansen case, despite the different nature of the two

models [89]. For instance, we did not include synaptic dynamics in Eq (36), i.e., neurons

receive instantaneous delta-like pulses. The onset of spatiotemporal chaos shown here sup-

ports thus the generality of transverse instabilitites in the oscillatory dynamics of coupled

NMMs.

Discussion

The idea that systems composed of simple deterministic subunits can give rise to complex spa-

tiotemporal behavior traces back to the seminal work of Alan Turing [51]. That work showed

that a homogeneous equilibrium in a system of diffusively coupled units might lose stability

due to the coupling between neighbouring sites, thereby producing spatial patterns. Decades

of research have extended this simple yet powerful framework to cover a wide range of possi-

bilities, including instabilities arising from uniform oscillatory states [52, 53, 90] and pattern

formation in complex networks [54]. Both of these extensions are embodied in the field of col-

lective synchronization, in which the Master Stability Function provides a proper formalism to

analyze the stability of homogeneous oscillatory states [58–62]. In brain networks, the stability

of synchronized states has been analyzed only in simplified network topologies [48, 50] or by

means of phase-reduction approximations that only apply for weak coupling [33, 35]. In this

paper we have studied a general scenario, that reveals transverse instabilities of homogeneous

states as an ubiquitous mechanism for the onset of travelling waves and high-dimensional

chaos in large-scale brain models.

In computational neuroscience, the spontaneous emergence of patterns through instabili-

ties of a uniform state has been emphasized mostly in the context of neural fields [91–95]. Neu-

ral fields are models defined in a continuous spatial support, where the synaptic coupling is a

smooth function of the distance between regions. Hence, these type of models cannot capture

the fine macroscopic organization of the brain connectome represented by complex networks,

and are thus more adequate to model local intra-cortical dynamics [96, 97]. Nonetheless, the

assessment of transverse instabilities is general enough to apply to both continuous spatial sup-

port with simplified interaction rules and neural mass models interacting through complex

networks. The main difference between the two cases lays on the decomposition of the

perturbation vector. In neural fields and regular network topologies [50], as in the Turing

framework, stability analysis of homogeneous states is attained by decomposing a spatial per-

turbation in Fourier space. Instead, in complex networks composed of coupled NMM, the

MSF requires the diagonalization of the structural connectivity matrix. Interestingly, some

studies show that spectral analysis of whole-brain networks enables the characterization of
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functional and resting brain activity [98–100]. Our work provides thus a mathematical frame-

work to further explore the relation between structural connectivity (in terms e.g. of graph

spectra) and functional activity data.

An important difference between large-scale neural dynamics and classical pattern forma-

tion lies in the nature of coupling. Classical pattern forming systems usually involve diffusive

coupling, for which the homogeneous manifold of the system coincides with the dynamics of

the uncoupled units [55]. In contrast, the long-range brain connections represented by struc-

tural connectivity matrices correspond to myelinated nerve tracts across brain regions. Hence,

the interactions between nodes are mediated by chemical synapses driven by the firing rate of

pre-synaptic regions. As a result, the homogeneous manifold of the system is given by a self-

coupled version of the single-node model, and therefore the coupling strength modifies the

uniform states of the system in a non-trivial manner. We have shown, for instance, that in

both Jansen and next generation NMMs, there is a change on the onset of synchronized activ-

ity from a Hopf to a SNIC bifurcation upon increasing the coupling parameter �. Additionally,

coupling eliminates all forms of bistability in the homogeneous states of the Jansen model,

whereas it enlarges the region of coexistence between homogeneously attracting limit-cycles

and steady states in the NG-NMM.

Most of the theory of pattern formation is based on studying instabilities from fixed points.

Although we also analyzed this case, we did not find instabilities arising from stationary states.

Instead, the linear stability of oscillatory solutions revealed the ubiquity of transverse instabili-

ties as a route for the emergence of spatiotemporal chaos in large-scale brain models. This

mechanism explains the onset of deterministic chaos outlined in previous works by means of

direct numerical simulations [44, 49]. Moreover, the numerically computed Master Stability

Functions (Fig 2(b)) show that the onset of unstable modes occurs through eigenvalues arbi-

trarily close to the zero eigenmode. This scenario is very close to that of the Benjamin-Feir

instability in the Ginzburg-Landau system, which was studied by Kuramoto as a main route to

turbulence in chemical reaction systems [52, 53, 60].

The emergence of high-dimensional chaos in large-scale brain networks is in line with

recent studies that highlight the prominence of turbulent dynamics as a signature of healthy

brain activity [8, 71, 101–103]. These complex fluctuations are observed in blood-oxygen-

level-dependent (BOLD) signals obtained from fMRI scans, which are characterized by slow

(below 1Hz) fluctuations. These are in the same time scale as the chaotic slow modulations of

alpha rhythms that we observed in our brain network composed of Jansen NMMs. Remark-

ably, experimental studies have also found a negative correlation between the amplitude of

alpha rhythms and BOLD activity [104–107]. Thus, we conjecture that the chaotic dynamics

generated by transverse instabilities might capture the spatiotemporal fluctuations of BOLD

signals observed in recordings.

Another important feature of the chaotic dynamics in the Jansen model is the coexistence

of two frequency ranges, theta (�5Hz) and alpha (�10Hz), in some regions of the parameter

space (see Fig 4(c)–4(e)). These alternating bursts of activity between the two rhythms are con-

sistent with the multifrequency and transient behavior of oscillations in EEG recordings.

Large-scale brain models aim to trace the basic principles behind neural activity. Therefore,

one might need to account for other sources of complexity not included in this work. For

instance, despite being a common choice in the literature [30, 33, 35, 44, 45, 56, 57], in some

cases it would be preferable to use non-normalized topologies. We have shown that regardless

of this simplification, complex spatiotemporal patterns and high-dimensional chaos exist

already in the row-normalized system. Moreover, the numerically-derived bifurcation diagram

of the non-normalized system shown in Fig 6(a) and 6(b) qualitatively matches the dynamical

landscape uncovered by the analysis of the homogeneous states of the simplified model.
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Additionally, here we have considered long-range excitatory coupling targeting only pyra-

midal neurons. The MSF formalism can also be applied in the case where long-range excitation

targets both excitatory and inhibitory units. A simple exploration of this setup using Jansen

NMMs indicated that no transverse instabilities emerged in this situation (results not shown).

This is in agreement with [50], which shows that self-sustained traveling waves emerge in a

ring of Wilson-Cowan units when cross-excitation only affects excitatory populations but van-

ish if interneurons are also targeted.

Finally, the assumption of homogeneous dynamics across brain regions might be chal-

lenged by previous findings that indicate hierarchical heterogeneities in synaptic strengths and

time scales [108, 109]. Nonetheless, a deeper understanding of transverse instabilities in sim-

plified systems provides a solid ground to analyze the emergence and propagation of spatio-

temporal neural activity in comprehensive models including such heterogeneities. To this end,

future work should consider quantitative comparisons between the dynamics emerging from

transverse instabilities and dynamical data from EEG or fMRI recordings. This might help to

validate some of the aforementioned modeling choices as well as providing relevant estima-

tions for �, usually given by fitting the model to available data (see, e.g. [8, 29]).

Materials and methods

Structural connectivity data

The structural connectivity of our NMM network has been obtained from diffusion tensor

imaging (DTI) data of 16 healthy subjects, collected and analyzed in a previous study [65]. The

different brain regions were defined using the AAL90 parcellation [64]. A 90 × 90 structural

connectivity matrix W was obtained averaging the connectome of the 16 subjects. For more

details about data collection and prepossessing we refer the readers to [65]. For details on the

further normalization used in most of this paper, see Section entitled “Normalized connectiv-

ity” below.

The Jansen NMM model

Single region. Jansen’s NMM (also known as Jansen-Rit model) describes the dynamical

activity of a cortical column of neurons [15, 16, 63]. Following principles derived from earlier

works [13, 110], the model assumes populations of pyramidal neurons (PN) and inhibitory

interneurons (IN), Recurrent connections are only present in the PN population, whereas

inhibitory neurons solely receive inputs from pyramidal neurons For simplicity the model

assumes that recurrent connections within the PN population are mediated through neurons

that do not receive direct input from inhibitory neurons, and can therefore be interpreted as

a third independent population, which we call recurrent pyramidal neurons (rPN). Finally,

pyramidal neurons also receive excitatory external stimuli from other brain regions, modelled

through a firing rate variable I(t).
In the Jansen model the excitatory and inhibitory post-synaptic potentials (PSP) are given

by

heðtÞ ¼ Aate� atHðtÞ

hiðtÞ ¼ Bbte� btHðtÞ
ð5Þ

whereH is the Heaviside step function, A and B are the PSP amplitudes, and a and b quantify

the synaptic time scales. As a result, a neural population receiving an excitatory firing rate of

r(t) generates an excitatory post-synaptic potential (ePSP) described by the second-order
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differential equation

€yðtÞ ¼ AarðtÞ � 2a _yðtÞ � a2yðtÞ : ð6Þ

Analogously, a inhibitory firing rate generates a inhibitory post-synaptic potential (iPSP)

according to

€yðtÞ ¼ BbrðtÞ � 2b _yðtÞ � b2yðtÞ : ð7Þ

On the other hand, a population with mean membrane potential v(t) generates a firing rate

according to the sigmoid function

SigmðvÞ≔
2e0

1þ erðv0 � vÞ
: ð8Þ

The model assumes that the self-dynamics of neurons within a population can be averaged

out. Thus, the entire system evolves as determined by the evolution of the average PSPs of the

different populations given by Eqs (6) and (7). As a result, the interactions between the three

populations (PN, IN, and rPN) lead to the 6-dimensional Jansen model:

_y0ðtÞ ¼ y3ðtÞ

_y1ðtÞ ¼ y4ðtÞ

_y2ðtÞ ¼ y5ðtÞ

_y3ðtÞ ¼ Aa Sigm½y1ðtÞ � y2ðtÞ� � 2ay3ðtÞ � a2y0ðtÞ

_y4ðtÞ ¼ AafIðtÞ þ C2 Sigm½C1y0ðtÞ�g � 2ay4ðtÞ � a2y1ðtÞ

_y5ðtÞ ¼ BbC4 Sigm½C3y0ðtÞ� � 2by5ðtÞ � b2y2ðtÞ ;

ð9Þ

where y0 accounts for the ePSP generated by the PNs, y1 is the sum of the ePSP generated by

the rPNs and the external excitatory inputs, and y2 is the iPSP generated by the INs. Finally,

the mean membrane potential of the pyramidal population is given by v≔ y1 − y2, which we

use as the main observable throughout this paper.

Network model. We consider a network composed of N nodes, each representing a brain

region. The dynamics of each node follows the Jansen model for a cortical column. Therefore,

the 6 equations governing the dynamics of node i read [35]

_y0;iðtÞ ¼ y3;iðtÞ

_y1;iðtÞ ¼ y4;iðtÞ

_y2;iðtÞ ¼ y5;iðtÞ

_y3;iðtÞ ¼ Aa Sigm½y1;iðtÞ � y2;iðtÞ� � 2ay3;iðtÞ � a2y0;iðtÞ

_y4;iðtÞ ¼ AafIiðtÞ þ C2 Sigm½C1y0;iðtÞ�g � 2ay4;iðtÞ � a2y1;iðtÞ

_y5;iðtÞ ¼ BbC4 Sigm½C3y0;iðtÞ� � 2by5;iðtÞ � b2y2;iðtÞ :

ð10Þ

The quantity Ii accounts for the incoming signals from the rest of the network or other layers

not represented in the model. In the brain model we consider that the different regions are

coupled only through excitation, thus inhibition acts only locally. Also, all regions receive

an external input from subcortical regions not represented in our model, in the form of a
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common constant firing rate p. Altogether, Ii(t) takes the form of the sum of two independent

terms:

IiðtÞ ¼ pþ �
XN

j¼1

~Wij Sigm½y1;jðtÞ � y2;jðtÞ� ; ð11Þ

where � is the coupling strength, and ~W ¼ ð~wijÞ is the row-normalized structural connectivity

matrix (see next section). We study the system under the influence of the external driving firing

rate p and the coupling strength �, leaving all the other parameters fixed, as defined in Table 1.

As mentioned above, from the six variables that characterize the dynamics of each brain region,

we monitor the mean membrane potential of the pyramidal neurons, vi≔ y1,i − y2,i.

Normalized connectivity. Given a N × N structural connectivity (SC) matrix W, a

detailed mathematical analysis of system (10) is generally unfeasible. In order to allow for a

semi-analytical treatment, we consider a normalized version of the topology. Such normaliza-

tion is usually employed in large-scale brain models [30, 33, 35, 44, 45, 56, 57]. Let D = (dij) be

a diagonal N × Nmatrix whose non-zero entries are the sum of incoming connections to each

node:

dij ¼
si i ¼ j

0 i 6¼ j

(

ð12Þ

where

si ¼
XN

j¼1

wij ð13Þ

is the in-strength of node i. Then we consider the row-normalized SC matrix

~W ¼ ð~wijÞ≔ D� 1W ð14Þ

whose elements are ~wij ≔ wij=si, i.e., ~W is obtained dividing each row of W by its sum. There-

fore, the sum of the elements on each row equals unity i.e.,

XN

j¼1

~wij ¼ 1 : ð15Þ

Table 1. Parameters of the Jansen system.

Parameter Meaning Value

A Maximal amplitude of excitatory post-synaptic potentials 3.25mV

B Maximal amplitude of inhibitory post-synaptic potentials 22mV

a Characteristic decay time for ePSP 100s−1

b Characteristic decay time for iPSP 50s−1

C1, C2, C3, C4 Synaptic strength (average number of synapses) between populations 135, 108, 33.75, 33.75

e0 Half of the maximum firing rate 2.5Hz

v0 Potential where half the maximum firing rate is achieved 6mV

r Neuronal excitability 0.56mV−1

~wij Connectivity weights from data

p Constant baseline firing rate to pyramidal neurons not fixed (Hz)

� Coupling strength not fixed

https://doi.org/10.1371/journal.pcbi.1010781.t001

PLOS COMPUTATIONAL BIOLOGY Transverse instabilities in large-scale brain networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010781 April 12, 2023 21 / 34

https://doi.org/10.1371/journal.pcbi.1010781.t001
https://doi.org/10.1371/journal.pcbi.1010781


Matrices with this normalization are sometimes called right stochastic matrices [111]. An

important property of right stochastic matrices that we use in our analysis is that their largest

eigenvalue is exactly Λ1 = 1, which corresponds to a uniform eigenvector ϕ(1) ≔ (1, . . ., 1)T. By

the by the Gershgorin circle theorem [112], all other eigenvalues are bounded within the unit

circle.

Finally, we remark that since the original structural connectome W, is symmetric, so is

the matrix Z≔ D� 1
2WD� 1

2. Hence Z is diagonalizable and has real eigenvalues. Using that

W ¼ D ~W we obtain

Z≔ D1
2 ~WD� 1

2: ð16Þ

Therefore, Z and ~W are similar (in the mathematical sense), i.e., they share the same eigenval-

ues. The fact that the eigenvalues o ~W are real (due to the symmetry of W) is not strictly neces-

sary to carry our analysis based on the MSF, but it simplifies it.

Homogeneous states

A row-normalized connectivity matrix ensures that all the different units in the network

receive the same amount of input, although distributed differently across the different

nodes. Using such type of connectivities, it is always possible to find homogeneous or uniform
solutions -either stationary or time dependent- in which all nodes of the network behave

identically.

Let y0, . . ., y5 be the variables that characterize the dynamics of each brain region in a

homogeneous state. Imposing then ym,i(t) = ym(t) form = 0, . . ., 5 and i = 1, . . ., N one finds

that the incoming input for each brain region in (10) reads

IiðtÞ ¼ pþ �
XN

j¼1

~wij Sigm½y1;jðtÞ � y2;jðtÞ� ¼ pþ � Sigm½y1ðtÞ � y2ðtÞ� ; ð17Þ

thus it does not depend on the node index i anymore. Replacing this expression of the input in

the Jansen model (10) one finds that, in a homogeneous state, the equations for the evolution

of each network node read

_y0ðtÞ ¼ y3ðtÞ

_y1ðtÞ ¼ y4ðtÞ

_y2ðtÞ ¼ y5ðtÞ

_y3ðtÞ ¼ Aa Sigm½y1ðtÞ � y2ðtÞ� � 2ay3ðtÞ � a2y0ðtÞ

_y4ðtÞ ¼ Aafpþ � Sigm½y1ðtÞ � y2ðtÞ� þ C2 Sigm½C1y0ðtÞ�g � 2ay4ðtÞ � a2y1ðtÞ

_y5ðtÞ ¼ BbC4 Sigm½C3y0ðtÞ� � 2by5ðtÞ � b2y2ðtÞ :

ð18Þ

Therefore, this low-dimensional system determines all homogeneous states of the coupled sys-

tem (10). Moreover, this system also retains the stability of such homogeneous states subject to

uniform perturbations, i.e., perturbations that act identically at each brain region, and there-

fore do not change the homogeneous character of the trajectories. In other words, Eq (18)

define an invariant manifold of Eq (10). Nonetheless, stable states in the homogeneous invari-

ant manifold might still be unstable to heterogeneous perturbations, i.e., perturbations trans-

verse to the manifold.
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Transverse stability

The following stability analysis is common in the study of dynamical systems in complex net-

works, specially (but not only), in the context of diffusive coupling [54, 68, 69]. The same tech-

nique can be applied to both, homogeneous fixed points and homogeneous limit-cycles. In the

later case it is known as the Master Stability Function (MSF) [58] (see also [59, 61] for intro-

ductory reviews). In this section we explain such stability analysis on the Jansen model, but it

can be easily extended to other systems. We use bold symbols for N and 6N dimensional vec-

tors and matrices, and regular symbols for 6-dimensional vectors, 6-dimensional matrices,

and scalar quantities. All scalar quantities except the time t and the coupling strength � have a

subscript.

Let yð0Þ ≔ ðyð0Þ0 ; . . . ; yð0Þ5 Þ
T

be a solution of (18). Then, the 6N-dimensional vector

yð0Þ ¼ ðyð0Þ0 ; . . . ; yð0Þ0 ; . . .
z}|{
N

; yð0Þ0 ; . . . ; yð0Þ5 Þ
T ð19Þ

is a homogeneous solution of (10), either stationary or periodic. Let us consider an arbitrary

small perturbation

δy ¼ ðdy0;1; . . . ; dy5;1; . . . ; dy0;N ; . . . ; dy5;NÞ
T

ð20Þ

where each component δyk,j is the perturbation acting on the variable k of node j in the system

(10). Expanding the velocity fields of (10) up to first order around y(0) one obtains the linear

evolution of the perturbation vector as

d
dt

δyðtÞ ¼ Jðyð0ÞÞδyðtÞ ð21Þ

where J is the full 6N × 6N Jacobian of system (10), evaluated at y(0). Notice that J can be writ-

ten as

Jðyð0ÞÞ ¼ Jðyð0ÞÞ � IN þ �Kðyð0ÞÞ � ~W ð22Þ

where� denotes the Kronecker product, J is the 6 × 6 Jacobian of the uncoupled Jansen Eq

(9), IN is the N × N identity matrix, and K = (kij) is a 6 × 6 matrix defined by

kij ¼

Aa Sigm0ðy1 � y2Þ i ¼ 5; j ¼ 2

� Aa Sigm0ðy1 � y2Þ i ¼ 5; j ¼ 3

0 otherwise :

8
>>><

>>>:

ð23Þ

One could, in principle, evaluate numerically the eigenvalues and eigenvectors of this Jaco-

bian in order to obtain the stability properties of the system. Nonetheless, there is a simpler

and more informative approach based on expressing the perturbation vector δy in an adequate

coordinate system.

Let ΦðaÞ ¼ ð�ðaÞ
1
; . . . ; �

ðaÞ

N Þ
T

be a normalized eigenvector of ~W associated with the eigenvalue

Λα for α = 1, . . ., N, so that

~WΦðaÞ ¼ LaΦ
ðaÞ : ð24Þ

The set of eigenvectors {Φ(1), . . ., Φ(N)} constitute a basis of the vector space RN , thus we can

express the perturbation δy of the homogeneous solution as a linear combination of such
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vectors. In this new basis, the perturbation acting on variable k of the jth node reads

dyk;jðtÞ ¼
XN

a¼1

uðaÞk ðtÞ�
ðaÞ

j ð25Þ

where uðaÞðtÞ ¼ ðuðaÞ0 ðtÞ; . . . ; uðaÞ5 ðtÞÞ
T

are the coordinates of the perturbation vector expressed

in the new basis. This can also be expressed in vectorial form using the Kronecker operator�

as

δyðtÞ ¼
XN

a¼1

uðaÞðtÞ �ΦðaÞ : ð26Þ

Now it is necessary to perform some calculations using the tensor product�. For simplicity

we drop some dependences: J = J(y(0)), K = K(y(0)), and u(α) = u(α)(t). Applying the change of

coordinates on Eq (21) and using Eq (22), we have that

d
dt

δy ¼
d
dt

XN

a¼1

uðaÞ �ΦðaÞ

¼
XN

a¼1

d
dt
uðaÞ

� �

�ΦðaÞ

¼ ðJ � IN þ �K � ~WÞ
XN

a¼1

uðaÞ �ΦðaÞ

¼ ðJ � INÞ
XN

a¼1

uðaÞ �ΦðaÞ
 !

þ �ðK � ~WÞ
XN

a¼1

uðaÞ �ΦðaÞ
 !

¼
XN

a¼1

ðJ � INÞðu
ðaÞ �ΦðaÞÞ þ �

XN

a¼1

ðK � ~WÞðuðaÞ �ΦðaÞÞ

¼
XN

a¼1

ðJuðaÞÞ � ðINΦðaÞÞ þ �
XN

a¼1

ðKuðaÞÞ � ð ~WFðaÞÞ

¼
XN

a¼1

ðJuðaÞÞ �ΦðaÞ þ �
XN

a¼1

ðKuðaÞÞ � ðLaΦ
ðaÞÞ

¼
XN

a¼1

ðJuðaÞÞ �ΦðaÞ þ �
XN

a¼1

ðLaKu
ðaÞÞ �ΦðaÞ

¼
XN

a¼1

ðJ þ �LaKÞu
ðaÞ �ΦðaÞ ;

ð27Þ

where we have used the diagonalization of the connectivity matrix Eq (24). Now, making

use of the linear independence of the eigenvectors fΦðaÞgN
a¼1

one obtains that the evolution of

u(α)(t) becomes independent for each α = 1, . . ., N through the relation

_uðaÞ ¼ ðJ þ �LaKÞuðaÞ ; ð28Þ

where J ðyð0Þ;LÞ≔ J þ �LaK is a family of 6 × 6 Jacobians that depend on the homogeneous

state of the system y(0) and on the structural connectivity eigenvalues Λα. If y(0) is a fixed point,
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the stability of the homogeneous solution simplifies to studying the eigenvalues (and eigenvec-

tors) of the Jacobian J , which is a function of the connectivity matrix eigenvalues Λα. If y(0) =

y(0)(t) is a periodic solution, then J is a periodic matrix and Floquet theory applies [72]. In

this context, the growth rate of a perturbation acting at the limit-cycle solution is determined

by the real part of the Floquet exponents corresponding to J , which must be determined

numerically. Practically speaking, for each value of Λα, we compute the real part of the largest

Floquet exponent of J as the largest Lyapunov exponent of the linear system Eq (28). The

code is available in github (www.github.com/pclus/transverse-instabilities). Finally, in order to

analyze the contribution of each structural eigenmode α on the growth rate of a specific pertur-

bation vector δy we compute the quantity

ca ¼ makuðaÞk : ð29Þ

Lyapunov exponents

Lyapunov exponents (LE) provide the growth rate of small perturbations acting on a time-

evolving trajectory of a dynamical system [77, 113]. To compute these quantities in practice we

employ a dynamical algorithm based on QR-decompositions, using Householder reflections

[77]. The algorithm is embedded in the available software (www.github.com/pclus/transverse-

instabilities). There are as many Lyapunov exponents as system dimensions, and they are usu-

ally sorted from largest to smallest: λ1� λ2� λ3� . . .� λ6N. Using the two largest Lyapunov

exponents λ1 and λ2, we can classify the system state in 5 types:

• Fixed points, corresponding to both LE being negative (λ1, λ2 < 0).

• Periodic dynamics, identified by a zero LE and the rest being negative (λ1 = 0, λ2 < 0).

• Quasiperiodic dynamics, i.e., a regime in which the system evolves with at least two incom-

mensurate characteristic frequencies. In this case both LE are zero (λ1 = 0, λ2 = 0).

• Chaotic dynamics, with a single positive LE (λ1 > 0, λ2� 0).

• Hyperchaos, with more than one positive LE (λ1, λ2 > 0).

Since the Lyapunov exponents are computed numerically, we need to impose a threshold to

discern between zero and non-zero values. We found that a value of |λk| < 10−4 was a reason-

able cut-off.

Another useful application of Lyapunov exponents is to compute the dimensionality of

the attractor, which is fractal in chaotic states. The Kaplan-Yorke formula [80] provides an

approximation of the fractal dimension of an attractor as

DKY ¼ jþ
Pj

i¼1
li

jljþ1j
; ð30Þ

where j is the LE for which

Xj

i¼1

li � 0 and
Xjþ1

i¼1

li < 0 : ð31Þ
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Synchronization and wave-propagation analysis

We quantify the synchronization of the network by extracting the phase variables ϕj(t) from

each node’s dynamics vj(t) using the Hilbert transform [114], i.e.,

�jðtÞ ¼ arctan
vðHÞj ðtÞ
vjðtÞ

 !

where vðHÞj ðtÞ is the Hilbert transform of vj(t),

vðHÞj ðtÞ ¼
1

p
P:V:

Z 1

� 1

vjðtÞ
t � t

dt

with P.V. indicating that the integral corresponds to the Cauchy principal value.

Then we can compute the complex quantity

ZðtÞ ¼ RðtÞeiCðtÞ ≔
XN

j¼1

ei�jðtÞ ð32Þ

in which R 2 [0, 1] is the usual Kuramoto order parameter, and C is the collective phase vari-

able [53, 114].

From a given phase gradient in space, we extract the propagation vector of each node ζj by

following the same procedure as in [30] (see also [5]). Briefly, the method consists on numeri-

cally finding the temporal and spatial derivatives of ϕ and then solving

d
dt
� ¼

Δ

� � ζ þ
@�

@t
¼ 0 ð33Þ

for ζ. The numerical differentiation of the phase is obtained through a constrained natural ele-

ment method [73]. The instantaneous speed of each node is then given by the modulus of the

velocity vector, z≔ kζk.
In order to measure the degree of alignment of a certain direction vector with neighbouring

nodes, we use a measure of local polarization. Let N j be the set of nodes that are located at less

than 40mm than node j. Then the local polarization of j is defined as

aj ¼
1

jN jj

X

k2N j

ζk
zk

�
�
�
�
�
�

�
�
�
�
�
�
2 ½0; 1� : ð34Þ

A value close to 1 indicates a perfect alignment of node j with its neighbours, whereas a value

close to zero indicates a nearly isotropic propagation at j.
Finally, in order to assess how much the direction of propagation changes over time we

compute the directional coherence as the modulus of the time-average normalized vectors

rj ¼
ζj
zj

* +�
�
�
�
�

�
�
�
�
�
: ð35Þ

Notice that ρj corresponds to the mean-resultant length of the temporal distribution of direc-

tions ζj/zj.

Next generation neural mass model

The firing rate equations for populations of quadratic integrate-and-fire neurons are based on

an exact mean-field theory derived by Montbrió et. al. [17]. This theory has been recently
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shown to apply also for neurons subject to Cauchy white noise [115]. Here we consider a

PING mechanism in which the oscillatory activity of each brain region is in the gamma range,

similarly to the scenario studied in [83]. Hence, at each network node j we consider an excit-

atory and a inhibitory populations of QIF neurons, each characterized by its firing rate, r, and

mean membrane potential, v. We also consider delta pulses for the PSP, as a means to illustrate

that the shape of the PSP is not crucial for the transverse instability of the synchronized state.

Hence, the neural activity of brain region j is given by

t _re;j ¼
D

tp
þ 2re;jve;j

t _ve;j ¼ Ze � ðpre;jtÞ
2
þ v2

e;j þ tðJeere;j � Jieri;j þ IjÞ

t _r i;j ¼
D

tp
þ 2ri;jvi;j

t _v i;j ¼ Zi � ðpri;jtÞ
2
þ v2

i;j þ tðJeire;j � Jiiri;jÞ

ð36Þ

where re,j and ve,j (resp. re,j, ve,j) are the firing rate and mean-membrane potential of the excit-

atory (resp. inhibitory) population of region j. The explanation and value of the different sys-

tem parameters are given in Table 2. This setup corresponds to the PING mechanism for

gamma activity, and shows that a single uncoupled brain area displays activity at a frequency

around 40Hz [83]. We have verified that the results are robust upon considering other parame-

ter choices and, in particular, when including recurrent inhibition (Jii > 0). As in the network

of Jansen NMMs, we consider that different regions interact only through excitation, i.e.,

Ij ¼ �
XN

j¼1

~wjkre;k : ð37Þ

Following the same argument as for the Jansen system, if all nodes of the network evolve

identically, then the dynamics of each network node follows

t _re ¼
D

tp
þ 2reve

t _ve ¼ Ze � ðpretÞ
2
þ v2

e þ tððJee þ �Þre � JieriÞ

t _r i ¼
D

tp
þ 2rivi

t _v i ¼ Zi � ðpritÞ
2
þ v2

i þ tðJeire � JiiriÞ :

ð38Þ

Table 2. Parameters of the NG-NMM.

Parameter Meaning Value

τ Time constant 20ms

ηe Baseline constant current for excitatory neurons not fixed

ηi Baseline constant current for inhibitory neurons -5

Δ Single neuron noise intensity 1

Jee, Jei, Jii, Jie Synaptic strength between populations 5,12,0,18

� Coupling strength not fixed

https://doi.org/10.1371/journal.pcbi.1010781.t002
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Numerical simulations and root-finding algorithm

Numerical simulations of the systems have been performed with a fourth-order Runge-Kutta

algorithm with time step Δt = 10−3. The C code to simulate the model composed of Jansen

NMMs is available at www.github.com/pclus/transverse-instabilities. Most of the simulations

have been run for 1000s after discarding an extra 1000s of relaxation time. The only exception

is Fig 5(a), for which we used a relaxation time of 104s in order to achieve a good convergence

of the zero Lyapunov-exponents needed to compute the Kaplan-Yorke dimension.

Two different types of initial conditions have been considered:

• Close to homogeneous: we select a point in the trajectory of the homogeneous dynamics of

the system using the equations of the homogeneous manifold, Eqs (18) and (38), and adding

an independent random perturbation to each variable, uniformly distributed between −10−3

to 10−3.

• Random: all variables of the system randomly distributed between −1 and 1.

In order to obtain the stationary states of the unnormalized network topology W in Section

entitled “Normalized connectivity” above, we use the adaptive Newton-Raphson multidimen-

sional root-finding algorithm provided by the GNU Scientific Library [116].

Supporting information

S1 Movie. Travelling wave in the large-scale brain model. Spatial representation of the mean

membrane potential from simulations of the model corresponding to the results of Fig 3(a).

(MP4)

S2 Movie. Travelling wave in the large-scale brain model. Spatial representation of the mean

membrane potential from simulations of the model corresponding to the results of Fig 3(b).

(MP4)

S3 Movie. Chaotic dynamics the large-scale brain model. Spatial representation of the mean

membrane potential from simulations of the model corresponding to the results of Fig 4.

(MP4)

S4 Movie. Periodic dynamics the large-scale brain model without normalization. Spatial

representation of the mean membrane potential from simulations of the model corresponding

to the results of Fig 6 (p = 320 and � = 50).

(MP4)

S5 Movie. Chaotic dynamics the large-scale brain model without normalization. Spatial

representation of the mean membrane potential from simulations of the model corresponding

to the results of Fig 6 (p = 170 and � = 50).

(MP4)
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39. Sanz Perl Y, Pallavicini C, Pérez Ipiña I, Demertzi A, Bonhomme V, Martial C, et al. Perturbations in

dynamical models of whole-brain activity dissociate between the level and stability of consciousness.

PLOS Computational Biology. 2021; 17(7):1–24. https://doi.org/10.1371/journal.pcbi.1009139 PMID:

34314430

40. Pons AJ, Cantero JL, Atienza M, Garcia-Ojalvo J. Relating structural and functional anomalous con-

nectivity in the aging brain via neural mass modeling. Neuroimage. 2010; 52(3):848–861. https://doi.

org/10.1016/j.neuroimage.2009.12.105 PMID: 20056154

41. Proix T, Jirsa VK, Bartolomei F, Guye M, Truccolo W. Predicting the spatiotemporal diversity of seizure

propagation and termination in human focal epilepsy. Nature Communications. 2018; 9(1):1088.

https://doi.org/10.1038/s41467-018-02973-y PMID: 29540685

42. Stefanovski L, Triebkorn P, Spiegler A, Diaz-Cortes MA, Solodkin A, Jirsa V, et al. Linking Molecular

Pathways and Large-Scale Computational Modeling to Assess Candidate Disease Mechanisms and

Pharmacodynamics in Alzheimer’s Disease. Frontiers in Computational Neuroscience. 2019; 13:54.

https://doi.org/10.3389/fncom.2019.00054 PMID: 31456676

43. Arbabyazd L, Shen K, Wang Z, Hofmann-Apitius M, Ritter P, McIntosh AR, et al. Virtual Connectomic

Datasets in Alzheimer’s Disease and Aging Using Whole-Brain Network Dynamics Modelling. eNeuro.

2021; 8(4). https://doi.org/10.1523/ENEURO.0475-20.2021 PMID: 34045210

44. Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A. Transcranial direct current stimulation changes

resting state functional connectivity: A large-scale brain network modeling study. NeuroImage. 2016;

140:174–187. https://doi.org/10.1016/j.neuroimage.2016.02.015 PMID: 26883068

45. Gollo LL, Roberts JA, Cocchi L. Mapping how local perturbations influence systems-level brain

dynamics. NeuroImage. 2017; 160:97–112. https://doi.org/10.1016/j.neuroimage.2017.01.057 PMID:

28126550

46. Petkoski S, Jirsa VK. Transmission time delays organize the brain network synchronization. Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

2019; 377(2153):20180132. https://doi.org/10.1098/rsta.2018.0132 PMID: 31329065

47. Ermentrout GB, Kopell N. Multiple Pulse Interactions and Averaging in Systems of Coupled

Neural Oscillators. Journal of Mathematical Biology. 1991; 29(3):195–217. https://doi.org/10.1007/

BF00160535

48. Borisyuk G, Borisyuk R, Khibnik A, Roose D. Dynamics and Bifurcations of Two Coupled Neural Oscil-

lators with Different Connection Types. Bulletin of Mathematical Biology. 1995; 57(6):809–840. PMID:

8528157

49. Wilson HR. Hyperchaos in Wilson–Cowan oscillator circuits. Journal of Neurophysiology. 2019; 122

(6):2449–2457. https://doi.org/10.1152/jn.00323.2019 PMID: 31664870

50. Kulkarni A, Ranft J, Hakim V. Synchronization, Stochasticity, and Phase Waves in Neuronal Networks

With Spatially-Structured Connectivity. Frontiers in Computational Neuroscience. 2020; 14:569644.

https://doi.org/10.3389/fncom.2020.569644 PMID: 33192427

51. Turing AM. The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of

London Series B, Biological Sciences. 1952; 237(641):37–72.

52. Benjamin TB, Feir JE. The disintegration of wave trains on deep water Part 1. Theory. Journal of Fluid

Mechanics. 1967; 27(3):417–430. https://doi.org/10.1017/S002211206700045X

53. Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Berlin: Springer; 1984.

54. Nakao H, Mikhailov AS. Turing patterns in network-organized activator-inhibitor systems. Nature

Physics. 2010; 6(7):544–550. https://doi.org/10.1038/nphys1651

55. Murray JD. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer New York;

2006.

56. Malagarriga D, Villa AEP, Garcia-Ojalvo J, Pons AJ. Mesoscopic Segregation of Excitation and Inhibi-

tion in a Brain Network Model. PLOS Computational Biology. 2015; 11(2):1–21. https://doi.org/10.

1371/journal.pcbi.1004007

57. Crofts JJ, Forrester M, O’Dea RD. Structure-function clustering in multiplex brain networks. EPL (Euro-

physics Letters). 2016; 116(1):18003. https://doi.org/10.1209/0295-5075/116/18003

58. Pecora LM, Carroll TL. Master Stability Functions for Synchronized Coupled Systems. Phys Rev Lett.

1998; 80:2109–2112. https://doi.org/10.1103/PhysRevLett.80.2109

59. Arenas A, Dı́az-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Physics

Reports. 2008; 469(3):93–153. https://doi.org/10.1016/j.physrep.2008.09.002

PLOS COMPUTATIONAL BIOLOGY Transverse instabilities in large-scale brain networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010781 April 12, 2023 31 / 34

https://doi.org/10.1016/j.neuroimage.2021.118551
http://www.ncbi.nlm.nih.gov/pubmed/34506913
https://doi.org/10.1371/journal.pcbi.1009139
http://www.ncbi.nlm.nih.gov/pubmed/34314430
https://doi.org/10.1016/j.neuroimage.2009.12.105
https://doi.org/10.1016/j.neuroimage.2009.12.105
http://www.ncbi.nlm.nih.gov/pubmed/20056154
https://doi.org/10.1038/s41467-018-02973-y
http://www.ncbi.nlm.nih.gov/pubmed/29540685
https://doi.org/10.3389/fncom.2019.00054
http://www.ncbi.nlm.nih.gov/pubmed/31456676
https://doi.org/10.1523/ENEURO.0475-20.2021
http://www.ncbi.nlm.nih.gov/pubmed/34045210
https://doi.org/10.1016/j.neuroimage.2016.02.015
http://www.ncbi.nlm.nih.gov/pubmed/26883068
https://doi.org/10.1016/j.neuroimage.2017.01.057
http://www.ncbi.nlm.nih.gov/pubmed/28126550
https://doi.org/10.1098/rsta.2018.0132
http://www.ncbi.nlm.nih.gov/pubmed/31329065
https://doi.org/10.1007/BF00160535
https://doi.org/10.1007/BF00160535
http://www.ncbi.nlm.nih.gov/pubmed/8528157
https://doi.org/10.1152/jn.00323.2019
http://www.ncbi.nlm.nih.gov/pubmed/31664870
https://doi.org/10.3389/fncom.2020.569644
http://www.ncbi.nlm.nih.gov/pubmed/33192427
https://doi.org/10.1017/S002211206700045X
https://doi.org/10.1038/nphys1651
https://doi.org/10.1371/journal.pcbi.1004007
https://doi.org/10.1371/journal.pcbi.1004007
https://doi.org/10.1209/0295-5075/116/18003
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1371/journal.pcbi.1010781


60. Nakao H. Complex Ginzburg-Landau equation on networks and its non-uniform dynamics. The Euro-

pean Physical Journal Special Topics. 2014; 223(12):2411–2421. https://doi.org/10.1140/epjst/e2014-

02220-1

61. Porter M, Gleeson J. Dynamical Systems on Networks: A Tutorial. Frontiers in Applied Dynamical Sys-

tems: Reviews and Tutorials. Springer International Publishing; 2016. Available from: https://books.

google.es/books?id=uzDuCwAAQBAJ.

62. Ashwin P, Coombes S, Nicks R. Mathematical Frameworks for Oscillatory Network Dynamics in Neu-

roscience. The Journal of Mathematical Neuroscience. 2016; 6(1):2. https://doi.org/10.1186/s13408-

015-0033-6 PMID: 26739133

63. Grimbert F, Faugeras O. Analysis of Jansen’s model of a single cortical column. INRIA; 2006. RR-

5597. Available from: https://hal.inria.fr/inria-00070410.

64. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated

Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI

MRI Single-Subject Brain. NeuroImage. 2002; 15(1):273–289. https://doi.org/10.1006/nimg.2001.

0978 PMID: 11771995

65. Deco G, Cabral J, Woolrich MW, Stevner ABA, van Hartevelt TJ, Kringelbach ML. Single or multiple fre-

quency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data.

NeuroImage. 2017; 152:538–550. https://doi.org/10.1016/j.neuroimage.2017.03.023 PMID: 28315461

66. Doedel EJ, Champneys AR, Dercole F, Fairgrieve TF, Kuznetsov YA, Oldeman B, et al. AUTO-07P:

Continuation and bifurcation software for ordinary differential equations; 2007.

67. Schecter S. The Saddle-Node Separatrix-Loop Bifurcation. SIAM Journal on Mathematical Analysis.

1987; 18(4):1142–1156. https://doi.org/10.1137/0518083

68. Fernandes LD, de Aguiar MAM. Turing patterns and apparent competition in predator-prey food webs

on networks. Physical Review E. 2012; 86(5):056203. https://doi.org/10.1103/PhysRevE.86.056203

PMID: 23214853

69. Asllani M, Challenger JD, Pavone FS, Sacconi L, Fanelli D. The theory of pattern formation on directed

networks. Nature Communications. 2014; 5(1):4517. https://doi.org/10.1038/ncomms5517 PMID:

25077521

70. Ercsey-Ravasz M, Markov N, Lamy C, Van Essen D, Knoblauch K, Toroczkai Z, et al. A Predictive Net-

work Model of Cerebral Cortical Connectivity Based on a Distance Rule. Neuron. 2013; 80(1):184–

197. https://doi.org/10.1016/j.neuron.2013.07.036 PMID: 24094111

71. Deco G, Sanz Perl Y, Vuust P, Tagliazucchi E, Kennedy H, Kringelbach ML. Rare long-range cortical

connections enhance human information processing. Current Biology. 2021; 31(20):4436–4448.e5.

https://doi.org/10.1016/j.cub.2021.07.064 PMID: 34437842

72. Grimshaw R. Nonlinear Ordinary Differential Equations. Applied mathematics and engineering science

texts. Taylor & Francis; 1991. Available from: https://books.google.es/books?id=yEWlegOzWxMC.

73. Illoul L, Lorong P. On some aspects of the CNEM implementation in 3D in order to simulate high speed

machining or shearing. Computers and Structures. 2011; 89(11):940–958. https://doi.org/10.1016/j.

compstruc.2011.01.018

74. Hindriks R, van Putten MJAM, Deco G. Intra-cortical propagation of EEG alpha oscillations. Neuro-

Image. 2014; 103:444–453. https://doi.org/10.1016/j.neuroimage.2014.08.027 PMID: 25168275

75. Zhang H, Watrous AJ, Patel A, Jacobs J. Theta and Alpha Oscillations Are Traveling Waves in the

Human Neocortex. Neuron. 2018; 98(6):1269–1281.e4. https://doi.org/10.1016/j.neuron.2018.05.019

PMID: 29887341
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