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ABSTRACT

Systems composed of interacting self-propelled particles (SPPs) display different forms of order–disorder phase transitions relevant to col-
lective motion. In this paper, we propose a generalization of the Vicsek model characterized by an angular noise term following an arbitrary
probability density function, which might depend on the state of the system and thus have a multiplicative character. We show that the
well established vectorial Vicsek model can be expressed in this general formalism by deriving the corresponding angular probability density
function, as well as we propose two new multiplicative models consisting of bivariate Gaussian and wrapped Gaussian distributions. With
the proposed formalism, the mean-field system can be solved using the mean resultant length of the angular stochastic term. Accordingly,
when the SPPs interact globally, the character of the phase transition depends on the choice of the noise distribution, being first order with
a hybrid scaling for the vectorial and wrapped Gaussian distributions, and second order for the bivariate Gaussian distribution. Numerical
simulations reveal that this scenario also holds when the interactions among SPPs are given by a static complex network. On the other hand,
using spatial short-range interactions displays, in all the considered instances, a discontinuous transition with a coexistence region, consistent
with the original formulation of the Vicsek model.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0046926

In 1995, Vicsek et al. proposed a simple model to study the
emergence of collective motion in a system composed of a large
number of self-propelled particles (SPPs). Since then, the study
of models displaying flocking phenomena has grown over time. In
the case of SPPs, two main elements must be taken into account:
the interaction rule according to which a SPP tends to align and
the stochastic source that hinders the perfect alignment. In this
paper, we generalize the formulation of the original Vicsek model
in order to account for arbitrary distributions for the stochas-
tic term, including multiplicative effects. The simplicity of the
proposed formalism provides a unifying framework to study the
effects of noise in Vicsek-like models of SPPs, giving a general
expression for the mean-field system, as well as it outlines the
striking differences in the nature of the transition depending on
how the interactions between particles are established.

I. INTRODUCTION

The self-organized movement of groups of interacting animals
can lead to complex spatiotemporal patterns on widely different

time and length scales, ranging from the migration of mammal
herds, the flocking of birds, the milling and flocking of fish schools,
the trailing of marching insects, and the swarming of flying insects,
or the migration of cells and bacteria.1–3 The study of these kinds
of phenomena has attracted a great deal of attention in the last
few decades, leading to the new interdisciplinary field of research
denominated collective motion.4–6 The field of collective motion has
greatly advanced recently by the gathering of a growing body of
experimental evidence, but its main impulse has been due to the
study of a large variety of models, aimed at either to reproduce the
patterns of movement of animals7,8 or to understand the ultimate
mechanisms driving the collective behavior of animals. From a bio-
logical point of view, such models tend to take into account the
detailed physiological and behavioral properties of the interacting
animals. From a statistical physics point of view, on the other hand,
the observation of the self-organized nature of collective motion in a
wide range of scales has prompted the formulation of minimal mod-
els of self-propelled particles, inspired by the concept of universality9

and based on simple rules of movement and alignment.
The first and most prominent of such minimal models is the

one proposed in 1995 by Vicsek and co-workers.10,11 This so-called
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original Vicsek model is defined in terms of a set of overdamped
self-propelling particles (SPPs) that evolve in discrete time on a
continuous Euclidean space of two dimensions and that are fully
characterized by their time-dependent position rj(t) and velocity
vj(t), assumed to have a constant modulus |vj(t)| = v0. The SPPs
interact among them by attempting to align the direction of their
velocities to the average velocity of a set of nearest neighbors. Full
alignment is hindered by a source of noise of strength η that repre-
sents the difficulties animals may have to identify the actual state of
motion of their nearest neighbors.

The interest of the original Vicsek model for the physics com-
munity lies in the fact that it predicts the presence of a dynamic
order–disorder (flocking) phase transition at a critical value of the
noise intensity, ηc, separating an ordered phase located at low noise
(η < ηc) in which the SPPs are aligned and travel coherently in a
common average direction, from a disordered phase at high noise
(η > ηc), in which SPPs move independently of each other.10,11

Hence, the Vicsek model allows us to relate the collective motion of
animals to the well-known features of standard phase transitions in
condensed matter.12 This interest has prompted the study of a large
number of variations, intended to include different aspects of the
behavior of real animals, and to explore their effects on the prop-
erties of the ensuing flocking transition. Among those Vicsek-like
models, we can mention variants studying the effects of difficulties
in processing information,13 non-metric neighborhoods,14 interac-
tions mediated by social networks,15,16 restrictions in the field of
vision,17 or nematic alignment.18

In this paper, we intend to provide a common framework for
the study and classification of some of these variants by proposing
a general class of Vicsek-like models that focuses on the role of the
stochastic noise that leads individuals to deviate from the average
direction of their neighbors. Inspired in the original formulation,
an individual in our model moves at a constant speed v0, aligning
its direction of motion with the average velocity of a set of defined
neighbors. The alignment is affected by a source of random angular
noise, which we choose depending on a noise strength parameter η

and which might also depend on the local polarization in the vicinity
of the individual, measured as the modulus of the average velocity of
its neighbors. The model is thus completely defined in terms of the
set of nearest neighbors and the distribution of the angular noise
and can, therefore, be mapped to different variations of the Vicsek
model. The analysis of these mappings allows us to focus on the par-
ticular case of what we call models with multiplicative noise, which
are those in which the angular noise distribution depends on the
state of the system, as opposed to additive noise models, in which
the noise affecting each SPP is independent of the system state.

While the full analysis of the models can be complex depend-
ing on the particular form of the direction distribution, we develop a
general mean-field theory that allows us to obtain preliminary infor-
mation on the nature of a possible flocking transition, given by an
order parameter identified by the modulus of the average velocity
of the system (the polarization). As we observe, at the mean-field
level, this transition can be of first or second order, depending on the
details of the angular noise distribution. For first-order transitions,
the order parameter shows a characteristic jump and an additional
critical singularity in the ordered phase, which is a signature of the
so-called hybrid phase transitions.19,20

Beyond the mean-field level, we study the behavior of
our model with multiplicative noise in the case of interactions
mediated by a static complex network,21 representative of social
interactions,15,16 and in the case of a two-dimensional space, with
metric interactions.10 In networks, the order of the transition is pre-
served with respect to the mean-field prediction and still shows
signatures of a hybrid nature. In the more realistic case of spatial
metric interactions, we observe that in the thermodynamic limit,
all prescriptions of multiplicative noise lead to a discontinuous
transition, in agreement with the behavior of the standard Vicsek
model.22

II. A CLASS OF GENERALIZED VICSEK-LIKE MODELS

We consider a class of models of flocking dynamics defined in
terms of N self-propelled particles (SPPs), S = {1, 2, . . . , N}, mov-
ing in a 2D medium defined as a square of size L endowed with
periodic boundary conditions. Particles are characterized by a posi-
tion in space rj(t) = (xj(t), yj(t)), and a velocity vector, represented
as a complex number, vj(t) = v0 exp[iθj(t)], where v0 is the par-
ticle speed, assumed constant, and θj(t) ∈ [0, 2π) is the direction
of motion. All variables of the model are dimensionless. The SPPs
undergo an overdamped dynamics, and their position is updated in
a discrete time framework as11

rj(t + 1) = rj(t) + v0e
iθj(t+1). (1)

In their movement, the SPPs interact among them by trying to align
their velocity along the average velocity of a set of other particles in
their close neighborhood. The alignment dynamics is implemented
by selecting at time t a set of neighboring particles, Nj(t), around
particle j, and computing their average velocity

uj(t) =
1

|Nj(t)|
∑

k∈Nj(t)

eiθk(t) ≡ aj(t)e
i2j(t), (2)

where |Nj(t)| denotes the number of neighbors in the set Nj(t). In
Eq. (2), we have defined aj(t) as the modulus of the neighbor’s aver-
age velocity and 2j(t) as the orientation of this average velocity. The
modulus aj(t) can be interpreted as an instantaneous measure of
local order (polarization) in the flock, whose global counterpart is
the instantaneous polarization

φ(t) =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiθj(t)

∣

∣

∣

∣

∣

∣

, (3)

the time average of which

φ = lim
T→∞

1

T

∫ T

0

φ(t) dt (4)

plays the role of the order parameter in the flocking transition.10

The orientational dynamics of the SPPs is represented by the
dynamical rule for the direction θj(t), which is given by

θj(t + 1) = 2j(t) + ξj, (5)

where ξj are uncorrelated random angular variables23 with support
in the interval [−π , π). That is, the SPPs follow the direction of the
average local polarization, with a perturbation given by the angular
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noise ξ . These random angles are extracted from a probability den-
sity function (PDF), P(ξ ; a, η), that, in the most general scenario, we
allow to depend on the local state of order of the system, as given by
the local polarization a, as well as on a parameter η, defined in the
range η ∈ [0, ηmax], which controls the width of the PDF and thus
gauges the level of noise applied to the system. The dependence of
P on the local polarization a determines the multiplicative character
of the system, since the intensity of the random fluctuations might
change with the state of the system at each time step through the
time-dependent value of a. The natural conditions to impose to the
distribution P(ξ ; a, η) are the following:

1. The PDF is symmetric and centered in zero, P(ξ ; a, η)

= P(−ξ ; a, η).
2. In the limit η → 0, we impose that P(ξ ; a, η) tends to a Dirac

delta function, limη→0 P(ξ ; a, η) = δ(ξ). In this limit, the veloc-
ity of each SPP becomes completely aligned to the average
velocity of its neighbors, which leads to a completely ordered
phase, with all SPPs moving in a common direction.

3. In the limit η → ηmax, we expect the systems to behave in
a completely random way, so we impose limη→ηmax P(ξ ; a, η)

= 1/(2π). In this limit, the system reaches a disordered phase.

From these conditions, it is expected that the models will expe-
rience a flocking transition between the ordered and the disordered
phase at some transition point 0 < ηc < ηmax.

In this general class of Vicsek-like models, the elements are
thus defined in terms of both the election of the neighborhood of
interacting particles, Nj(t), and the PDF of the angular noise char-
acterizing the fluctuations of the direction of motion with respect to
the local average. The usual choice for the set of interacting neigh-
bors is the metric one in the original Vicsek model,10 consisting of a
circle centered at rj(t) with radius r0, i.e.,

Nj(t) = {k ∈ S | ‖rj(t) − rk(t)‖ ≤ r0}. (6)

Variations of this rule can impose, for example, a field of vision, in
which interacting neighbors are those within a circle of radius r0 and
whose position forms a limited angle with the heading of the SPP,24

i.e.,

Nj(t) = {k ∈ S | ‖rj(t) − rk(t)‖ ≤ r0 ∧ vk(t) · vj(t) ≤ αv2
0}

for a given α < 1.
Other non-metric choices consider a fixed number of nearest

neighbors, obtained from a Voronoi tesselation14 or the set of fixed
neighbors in a static architecture of connections given by a com-
plex network.15,16,25,26 In this case, for a complex network defined in
terms of a static adjacency matrix A = (ajj), taking values aij = 1
when particles i and j are connected and aij = 0 otherwise,21 we have

Nj = {k ∈ S | ajk = 1}, (7)

which is time independent. Notice that for a fixed pattern of inter-
actions, the position of each particle is irrelevant for the evolution of
the system, and it is usually not considered.15,16

The second element defining the properties of the model in
our framework is the angular noise distribution P(ξ ; a, η). In order
to gain an intuition about its possible form, we consider two clas-
sic models of flocking dynamics and present their mapping to our
generalized model.

A. Scalar Vicsek model

In the original Vicsek model,10 the angular noise is imple-
mented as a uniform random number in the interval [−ηπ , ηπ],
with η ∈ [0, 1]. We thus have in this case

P(ξ ; a, η) ≡ P(ξ ; η) =
1

2πη
H(ηπ − ξ)H(ξ + ηπ), (8)

independent of the local polarization, and where H(x) is the Heavi-
side step function. Since in this case there is no dependence on the
local polarization, we can say that the noise has an additive nature,
i.e., it is independent of the local state of the system. The Vicsek
model with this angular distribution is usually referred to as the
Vicsek model with scalar or intrinsic noise.27

The scalar Vicsek model represents the case with the simplest
distribution of angles, given by a bounded uniform distribution.
More complex and physically motivated distributions appear when
we consider variations of the original Vicsek model, as we will see
next.

B. Vectorial Vicsek model

Grégoire and Chaté13 introduced a modification of the original
Vicsek model aimed at capturing the errors committed by a single
individual in determining the direction of its neighboring particles.
In this case, velocity directions are updated according to the rule

θj(t + 1) = arg







1

|Nj(t)|
∑

k∈Nj(t)

eiθk(t) + ηeiχj(t)







, (9)

where χj are independent uniformly distributed random angles in
the interval χj ∈ [0, 2π) and the noise parameter belongs to the
range η ∈ [0, ∞). This type of noise is usually termed as vectorial
or extrinsic.27

In order to map this model to our formalism, we note that, since
the random variables χj are uniformly distributed, they are invariant
under rotations.23 Therefore, Eq. (9) is equivalent to

θj(t + 1) = arg
{

aje
i2j(t) + ηei(2j(t)+χj)

}

(10)

= arg
{

ei2j(t)
(

aj + ηeiχj
)}

(11)

= 2j(t) + arg{aj + ηeiχj}. (12)

Hence, we only need to determine the distribution of ξ = arg{a +
ηeiχ }, where a and η are given parameters (the subindices j are
dropped for the sake of simplicity).

The expression reiξ = a + ηeiχ defines a circle parameterized
by χ with center a and radius η in the complex plane [see Fig. 1(a)].
Separating real and imaginary parts, one gets the implicit equation
that defines the circle of possible directions, given by

r2 = η2 + 2ra cos(ξ) − a2, (13)
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which, solving for r, leads to

r(ξ) = a cos(ξ) ±
√

η2 − a2 sin2 ξ , (14)

where ξ ∈ [− arcsin(η/a), arcsin(η/a)] if η < a and ξ ∈ [−π , π]
otherwise. Since all the points lying on the circle are equiproba-
ble, we consider an infinitesimal angular interval. [ξ , ξ + ε) and
compute the arc length over such small interval as

P(ξ ; a, η) = lim
ε→0

1

2πηε

∫ ξ+ε

ξ

dξ

√

r′(ξ)2 + r(ξ)2

=
√

r′(ξ)2 + r(ξ)2

2πη
, (15)

where the normalization constant 1
2πη

corresponds to the total arc

length of the circle, and r′(ξ) denotes the first derivative of r with
respect to ξ . Using the expression for r(ξ) in Eq. (14), we finally
obtain the distribution for the angular random variables ξ

P(ξ ; a, η) =























1

2π

(

1 +
a cos(ξ)

√

η2 − a2 sin2(ξ)

)

for η > a, ξ ∈ (−π , π],

a cos(ξ)

π
√

η2 − a2 sin2(ξ)
for η ≤ a, ξ ∈ [− arcsin

(

η

a

)

, arcsin
(

η

a

)

].

(16)

In this distribution, which does not coincide, to the best of our knowledge, with any typical angular probability distribution,23 the multiplica-
tive structure of the noise becomes explicit through the dependence of P on a. More specifically, the distribution depends on the ratio between
the local polarization a and the control parameter η. Thus, introducing the variable ν = η/a ≥ 0, Eq. (16) can be expressed as

P(ξ ; ν) =























1

2π

(

1 +
cos(ξ)

√

ν2 − sin2(ξ)

)

, ν > 1, ξ ∈ (−π , π],

cos(ξ)

π
√

ν2 − sin2(ξ)
, ν ≤ 1, ξ ∈ [− arcsin (ν) , arcsin (ν)].

(17)

Figure 1(b) shows the shape of P(ξ ; ν) for various values of ν.
The piecewise character of P illustrates the strong effects of the vec-
torial noise. If the local polarization of the particle a is smaller than
the noise strength η (i.e., ν > 1), then the distribution is unimodal,
with ξ ranging within (−π , π), and tends to the uniform distribu-
tion P(ξ) = 1/2π in the limit ν → ∞. On the other hand, if the
local polarization is larger than the noise strength (i.e., ν < 1), then
the probability density is concentrated at the extreme values of the
distribution, ± arcsin

(

η

a

)

. In the limit of ν → 0, the extremes of the
distribution coalesce to yield a delta function, as can be checked in
the Fourier space.

III. MULTIPLICATIVE MODELS FOR THE ANGULAR

NOISE DISTRIBUTION

The form of multiplicative noise distribution shown by the
Vicsek model with angular distribution of amplitude (variance)
depending on ν = η/a represents a physically motivated choice, in
which the fluctuations of the particle orientation around the direc-
tion of the local polarization, 2j(t), are an increasing function of
the noise strength η and a decreasing function of the local polar-
ization aj, meaning that an individual has a stronger tendency to
follow the average direction of a group if this group is very coher-
ent (an explicit mathematical relation is derived in Sec. IV). For
this reason, in the following, we will consider two additional models

characterized by an angular distribution with this kind of multiplica-
tive noise: a simple wrapped Gaussian noise and a more physically
motivated bivariate Gaussian distribution.

A. Wrapped Gaussian noise

Gaussian distributions represent a natural choice for typical
distributions of noise in mathematical models. In the present case,
the noise term has a distribution with support in the unit circle.
Therefore, the natural extension of Gaussian noise is provided by a
Gaussian distribution defined at the scalar level and then projected
on the unit circle. We thus consider a model in which the angular
noise distribution P(ξ ; a, η) is a normal distribution with a standard
deviation ν = η/a wrapped on the circle. The resulting probability
density reads23

P(ξ ; a, η) =
a

η
√

2π

∞
∑

m=−∞

exp

[

−a2(ξ + 2πm)2

2η2

]

. (18)

Practically, one just simulates a usual Gaussian variable ζ and then
wraps it to [0, 2π) as ξ = ζ(mod 2π).

In this case, the multiplicative structure of the distribution does
not follow from a mathematical derivation, but it still holds the same
physical meaning as the vectorial model: the ability of a SPP to
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FIG. 1. (a) Geometric interpretation of the noise effects in the vectorial Vicsek
model. The red and blue circles depict the circle reiξ = a + ηeiχ corresponding
to η1 = 0.5 (red) and η2 = 0.7 (blue), both cases with a local polarization of
a = 0.6. The gray shaded area indicates an interval ε over which the arc length
needs to be computed to obtain P(ξ). (b) Shape of P(ξ ; ν) for different values of
ν = η/a, as obtained by Eq. (17).

properly determine the average direction of its neighbors depends
on how strong such local coherence is. Nonetheless, the shape of
the distribution is drastically different from that of the vectorial
model. Figure 2(a) shows the shape of the wrapped Gaussian dis-
tribution for different values of ν = η/a. The distribution remains
unimodal (except for the limiting case ν → 0), being thus closer to
prototypical cases of noise distributions used in stochastic dynamics.

B. Bivariate Gaussian noise

The inclusion of vectorial noise in the Vicsek model is meant
to account, on average, for the inaccuracy of the single individuals
in determining the exact direction of their neighbors.13,28 Here, we
propose a different noise term also aimed to capture these errors.
The main idea consists of adding a bivariate Gaussian random vari-
able for each particle in the computation of the mean direction,
which can be interpreted as making a small error in the determi-
nation of the orientation of each neighbor. Formally, this model can

FIG. 2. (a) Probability density function of a wrapped Gaussian random variable
for different values of the standard deviation ν = η/a [Eq. (18)]. (b) Probability
density function of a projected normal distribution corresponding to a bivariate
Gaussian distribution centered at a and with covariance matrix η2

I for different
values of ν = η/a [Eq. (22)]. In both panels, red, blue, green, and purple curves
correspond to ν = 0.5, 0.7, 0.1, and 2, respectively.

be formulated as

θj(t + 1) = arg







1

|Nj|
∑

k∈Nj

(

eiθk(t) + ζ
(k)
j (t)

)







, (19)

where the real and imaginary parts of the complex numbers ζ
(k)
j

= α
(k)
j + iβ(k)

j are independent Gaussian variables with zero mean

and variance σ 2. This equals to considering that the vectors

(α
(k)
j , β(k)

j ) are bivariate Gaussian variables with covariance matrix

σ 2
I. Then, one can sum the contributions of the different Gaussian

terms so that the system reads

θj(t + 1) = arg

{

aje
i2j +

1
√

|Nj|
ζ j(t)

}

, (20)

where ζ j = αj + iβj and (αj, βj) are also bivariate Gaussian variables

with covariance σ 2
I. The argument of a bivariate Gaussian random

variable centered at (aj cos(2j), aj sin(2j)) and standard deviation σ
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follows a projected normal distribution.23 Since the projected nor-
mal distribution is closed under rotations, the generalized Vicsek
model with bivariate Gaussian noise can be written in the form

θj(t + 1) = arg
{

aje
i2j
}

+ ξj(t), (21)

where ξj is a projected normal angular variable centered at (aj, 0)

and covariance matrix σ 2
I/
√

|Nj|. Notice that the mean direction
2j does not have an impact on the noise distribution, whereas the
local polarization aj does.

In this particular case, there are two sources of multiplicative
effects: the local polarization aj and the number of neighboring par-
ticles |Nj|. The study of the impact of the number of neighboring
particles on the system is beyond the scope of this paper and we leave
it for future studies. Instead, we consider a simplified version where
the standard deviation of the variables αj and βj is just the control
parameter η. Accordingly, the probability density for the random
variables ξ as formulated in Eq. (5) is a projected normal distribu-
tion corresponding to a bivariate Gaussian centered at a and with
standard deviation η, which leads to [see Eq. (3.5.48) in Ref. 23]

P(ξ ; a, η) = c0 +
a

η
cos(ξ)8

(

a

η
cos(ξ)

)

f

(

a

η
sin(ξ)

)

, (22)

where c0 = exp
(

−a2

2η2

)

/(2π) is a constant and 8(z) and f(z) are

the cumulative distribution and probability density functions of
a normally distributed random variable with zero mean and unit
variance, respectively. It is worth noticing that, again, the distribu-
tion only depends on the parameter η/a, which arises naturally by
implementing the projection of the stochastic vectors on the unit
circle.

Figure 2(b) shows the shape of the bivariate Gaussian distri-
bution for different values of ν. The shape looks very similar to the
wrapped Gaussian distribution depicted in Fig. 2(a): it remains uni-
modal for all finite values of ν. The most visible difference between
both distributions is the dependence of the distribution width with
ν, which we quantify in Sec. IV E in terms of the circular vari-
ance. The unimodality of both wrapped and bivariate models for
the noise introduce a striking change in how the stochastic fluc-
tuations affect each SPP: in the vectorial model, the distribution is
peaked at the extremes of the domain even for small values of ν,
whereas in the newly proposed models, the fluctuations are, at all
times, concentrated around the zero angle.

IV. MEAN-FIELD THEORY

We can gain a preliminary understanding of the properties of
our class of models by means of a mean-field analysis, by which we
mean the limit case in which each SPP interacts with all other par-
ticles or, in other words, when interactions are mediated by a fully
connected network. In this case, we have

8 = φeiα =
1

N

N
∑

j=1

eiθj , (23)

where φ = |8| denotes the order parameter of the system. The
velocity of each variable is updated according to

θj(t + 1) = α(t) + ξj(t). (24)

Thus, one can write an equation for the evolution of the order
parameter as

φ(t + 1) =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiα(t)+iξj(t)

∣

∣

∣

∣

∣

∣

=
1

N

∣

∣

∣

∣

∣

∣

eiα(t)

N
∑

j=1

eiξj(t)

∣

∣

∣

∣

∣

∣

=
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiξj(t)

∣

∣

∣

∣

∣

∣

. (25)

The distribution of each ξj depends, in principle, on η and the
local polarization aj. In the mean-field level, however, aj = φ. The
stochastic variables ξj on the previous equation are thus all dis-
tributed according to the probability density P(ξ ; φ(t), η). Hence,
invoking the thermodynamic limit (N → ∞), one finally obtains the
evolution equation of the mean-field as

φ(t + 1) = E[cos(ξ)] =
∫ π

−π

P(ξ ; φ(t), η) cos(ξ)dξ (26)

≡ ρ(φ(t), η), (27)

where we are using the fact that the distribution P is symmetric and
centered at zero. The fixed points of the previous equation corre-
spond to the stationary states of the mean-field solution, which are
obtained as the solution of the self-consistent mean-field equation,

φ = ρ(φ, η) =
∫ π

−π

P(ξ ; φ, η) cos(ξ)dξ . (28)

In circular statistics, the quantity ρ = E[cos(ξ)] is known
as mean resultant length and it is a well studied measure of
concentration.23 Moreover, the circular variance of an angular dis-
tribution is usually defined as V = 1 − ρ. The fact that, in a globally
coupled system, the order parameter corresponds exactly to the
mean resultant length of the noise distribution P(ξ) is an important
result that simplifies the analysis of the mean-field dynamics.

In the following, we will consider the mean-field solution of the
models defined by the angular distributions considered above.

A. Scalar Vicsek model

The original Vicsek model, characterized by the probability
distribution presented in Eq. (8), presents the mean-field solution

φ(η) = ρ(η) =
sin(πη)

πη
, (29)

which does not undergo any phase transition except at the limiting
value ηc = 1, for which the system becomes disordered,16 with linear
scaling of the order parameter

φ ∝ 1 − η (30)

at the vicinity of the critical point. In Fig. 3(a), we present a plot of
the shape of the mean-field order parameter as a function of η.

B. Vectorial Vicsek model

The vectorial Vicsek model, defined by the angular noise dis-
tribution Eq. (17), has a mean resultant length, for ν > 1, of the

Chaos 31, 043116 (2021); doi: 10.1063/5.0046926 31, 043116-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. (a) Mean-field transitions for the four different
types of noise, namely, original scalar noise (grey trian-
gles), vectorial noise (red circles), bivariate Gaussian (blue
squares), and wrapped Gaussian (green plusses). Symbols
correspond to simulations with N = 104 particles starting
from a fully ordered state. Lines have been obtained from
the analytical results. A continuous line indicates a stable
solution, whereas dashed lines correspond to unstable fixed
points. (b) Dependence of the circular variance, defined as
V = 1 − ρ, on the parameter ν = η/φ for the three multi-
plicative distributions [same colors as in (a)]. Inset shows the
dependence of the control parameter η on the distribution
parameter ν.

form

ρ =
∫ π

−π

dξ
cos2 ξ

2π
√

ν2 − sin2 ξ
=

1

2ν
2F1

(

1

2
,
1

2
; 2,

1

ν2

)

, (31)

where 2F1 is the hypergeometric function.29 For the case ν ≤ 1,
denoting ξ0 = arcsin(ν), we obtain

ρ =
∫ ξ0

−ξ0

dξ
cos2 ξ

π
√

ν2 − sin2 ξ
= 2F1

(

1

2
,
−1

2
; 1, ν2

)

. (32)

Using the fact that ν = η/φ, we obtain the mean-field equation for
the Vicsek model with vectorial noise,

φ = ρ(φ, η) =















φ

2η
2F1

(

1

2
,
1

2
; 2,

φ2

η2

)

, φ < η,

2F1

(

1

2
,
−1

2
; 1,

η2

φ2

)

, φ ≥ η.

(33)

We notice that this result was already reported in Ref. 27, obtained
using a completely different approach. An explicit solution for

φ = ρ(φ, η) is, as far as we know, out of reach. However, in the
present case of multiplicative noise, since the angular noise distri-
bution depends on the ratio ν = η/φ, we can write the mean-field
equation as

η =
η

φ
ρ

(

η

φ

)

≡ νρ(ν). (34)

As a result, the mean-field solution can be obtained numerically
simply by plotting the noise parameter η(ν) = νρ(ν), as a func-
tion of ν, and obtaining the order parameter from the expression
φ = η(ν)/ν. The red curve in Fig. 3(b) shows the monotonically
increasing relation between the circular variance, V = 1 − ρ, and
the distribution parameter ν, whereas the inset shows the form of
η(ν) as a function of ν. In Fig. 3(a), we plot the corresponding mean-
field solution. The continuous line indicates a stable fixed point,
whereas the dashed line indicates unstable solutions. The curves are
accompanied by results of numerical simulations of the mean-field
system for N = 104 starting from an ordered state.

Chaos 31, 043116 (2021); doi: 10.1063/5.0046926 31, 043116-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

While the original Vicsek model does not present a phase
transition in the mean-field limit, the vectorial Vicsek model does
display one: for large η, only the disordered solution exists (i.e.,
φ = 0). As noise is reduced, two new solutions appear through a
saddle-node bifurcation at ηc ' 0.6715 (determined numerically),
thus corresponding to a discontinuous phase transition. Only one
of the two new solutions is stable. For a range of intermediate val-
ues of η, there is multistability between the ordered and disordered
states. The value ηc′ for which the solution φ = 0 collides with the
unstable state and loses stability can be obtained analytically as

d

dφ
ρ(φ, ηc′)

∣

∣

∣

φ=0
=

1

2ηc′
2F1

(

1

2
,
1

2
; 2, 0

)

=
1

2ηc′
= 1. (35)

Hence, for η < ηc′ = 1/2, only the ordered state is stable.

C. Wrapped Gaussian noise

For the wrapped Gaussian noise, defined by the angular noise
distribution in Eq. (18), the mean resultant length takes the form
[see Eq. (3.5.63) from Ref. 23]

ρ = exp

(

−
η2

2φ2

)

, (36)

which, from the mean-field equation φ = ρ(φ, η), leads to the
implicit mean-field solution

η = φ
√

−2 log(φ), (37)

which is valid only for φ > 0. However, since, for finite η > 0,

lim
φ→0

ρ(φ, η) = 0, (38)

we can see that the solution φ = 0 exists as a limiting case.
The wrapped Gaussian distribution exhibits a discontinuous

phase transition at the mean-field level. Equation (36) has two
branches of solutions, a stable and an unstable one. Both branches
coexist with the disordered state φ = 0, which is stable for all val-
ues of η. The ordered state vanishes at the local maximum of η in
Eq. (37), which yields a transition point ηc = e−1/2 with the jump
of the discontinuous transition being also φc = e−1/2. In Fig. 3(a),
we present a plot of the resulting mean-field solution for the order
parameter φ. Also, in this case, the (circular) variance of the distri-
bution increases with ν, as illustrated by the green line in Fig. 3(b).

D. Bivariate Gaussian distribution

The bivariate Gaussian distribution, characterized by the angu-
lar noise distribution equation (22), has an associated mean resultant
length,30

ρ =
φ

2η

√

π

2
e
− φ2

4η2

[

I0

(

φ2

4η2

)

+ I1

(

φ2

4η2

)]

, (39)

where I0(z) and I1(z) are modified Bessel functions of the first kind.29

In this case, the mean-field equation φ = ρ(φ, η) leads to
a continuous phase transition, as a numerical analysis based on
Eq. (34) shows. As indicated by the blue squares in Fig. 3(a), upon
reducing η, the disordered state (φ = 0) loses stability through a
pitchfork bifurcation, giving rise only to one new meaningful sta-
ble state. Although the mean-field equation is hard to analyze, it is

possible to compute the critical point value ηc, since it corresponds
to the loss of stability of the disordered solution φ = 0. Hence, ηc is
given by

d

dφ
ρ(φ, η)

∣

∣

∣

φ=0
=

1

2ηc

√

π

2
= 1. (40)

Thus, ηc = 1
2

√

π

2
' 0.627. Using this value, it is possible to compute

the critical exponent β for the phase transition. Performing a Taylor
expansion on both sides of the mean-field equation φ = ρ(φ, η) for
φ � 1 up to third order, one obtains the relation

1 =
ηc

η

(

1 −
φ2

8η2

)

. (41)

Solving for φ and taking η → ηc finally leads to

φ =
2
√

2η
√

ηc

(ηc − η)
1
2 ∝ (ηc − η)

1
2 . (42)

Thus, near the transition, the order parameter scales with an expo-
nent of β = 1/2.

E. Nature of the transition in multiplicative noise

models

Surprisingly, despite being qualitatively quite similar, the three
distributions with multiplicative noise exhibit an order–disorder
transition with three different scenarios. The Vicsek model with
vectorial noise has a first-order bifurcation with a small region
of bistability; the wrapped Gaussian noise model shows a first-
order bifurcation coexisting with a disordered state for all values
of η; and the bivariate Gaussian noise model presents a continu-
ous, second-order phase transition. Such differences are not obvious
from the definition of each distribution. In fact, in all three cases,
the amplitude (variance) of the distribution increases with ν [see
Fig. 3(b)].

In order to understand a priori which choices of the angular
noise distribution lead to each of these different cases, one should
notice that, from the mean-field equation, ρ(ν) = φ. Hence, at the
fixed points different from the disordered state φ = 0, the distribu-
tion parameter ν = η/φ can be written as ν = η/ρ(ν). Therefore,
the mean-field solutions corresponding to the ordered phase appear
as the values of the control parameter as a function of ν, η = νρ(ν)

[see Eq. (34)]. The inset of Fig. 3(b) presents the functions νρ(ν) for
all the cases studied here. These functions show whether for a fixed η

there are one or two additional solutions to the disordered case. The
existence of a local maximum indicates the presence of two ordered
solutions in the vicinity of the maximum, and thus the presence of a
first-order transition, whereas a monotonic function characterizes a
second-order transition.

The two discontinuous first-order transitions presented here
emerge as a saddle-node bifurcation of a system at the thermody-
namic limit. Moreover, close to the transition, the order parameter
behaves as

φ − φc ∝ (ηc − η)β , (43)

where φc is the height of the jump at the discontinuity and β

is a characteristic exponent. According to this observation, we
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TABLE I. Estimated values of β in mean-field and in power law distributed networks

with degree exponent γ . The mean-field values for the wrapped Gaussian and the

bivariate Gaussian are analytical results. The mean-field value for the vectorial has

been obtained through a linear fitting of the log–log data. The values for the networks

have been obtained through a non-linear fitting algorithm.

Mean-field γ = 2.5 γ = 3.0 γ = 3.5

Vectorial 0.489(3) 0.34(2) 0.24(2) 0.19(5)
Bivariate Gaussian 1/2 0.47(1) 0.48(2) 0.48(1)
Wrapped Gaussian 1/2 0.38(3) 0.37(2) 0.28(2)

are therefore in front of a hybrid phase transition,19,20 that is, a
phase transition that exhibits a jump in the order parameter, as
in first-order transitions, accompanied by a critical singularity, as
in second-order transitions. For the Vicsek model with vectorial
noise, we estimate the value of the critical exponent numerically as
β ' 0.5 (see Table I). For the wrapped Gaussian noise, recalling that
φc = ηc = e−1/2, the critical exponent can be obtained as

β = lim
φ→φc

log (φ − φc)

log
(

ηc − φ
√

−2 log φ
) =

1

2
. (44)

V. MULTIPLICATIVE NOISE MODELS ON NETWORKS

In order to gain some understanding of the applications of
mean-field theory in our class of flocking dynamics models, we
consider the case in which interactions are mediated by a static com-
plex network.21 The relevance of this case is based on the recent
claims that a network structure, representing the patterns of social
interactions,31 can be relevant in understanding the flocking behav-
ior of social animals,15,16,32–34 which might have a stronger tendency
to follow individuals with which they have stronger social ties.34

Previous works have shown that the scalar Vicsek model with net-
worked interactions displays a second-order transition,16,27 whose
properties depend on the degree of heterogeneity of the network.
Here, we present the results of numerical simulations of generalized
Vicsek models with multiplicative noise on uncorrelated networks
with a heterogeneous degree distribution given by a power law
P(k) ∼ k−γ , as typically observed in social interaction networks,35,36

generated with the uncorrelated configuration model (UCM).37 We
consider networks of size N = 106 and different degree exponents
γ = 2.5, 3.0, and 3.5. Our results are presented in Fig. 4, where we
display the time averaged order parameter φ computed over a time
span of 2 × 105 time steps after a thermalization of 5 × 104 time
steps. Results are computed starting from a completely ordered state,
except for the dashed green lines in Figs. 4(a) and 4(c), where the
SPPs initially point to randomly chosen directions.

FIG. 4. Results of the generalized Vicsek models with fixed interactions given by power law distributed networks with N = 106 nodes and degree distribution exponent
γ = 2.5 (red squares), 3 (blue circles), and 3.5 (green triangles). Top panels show the behavior of the order parameter φ for different values of η, whereas bottom panels
show the corresponding scaling behavior close to the transition, with dashed lines indicating the results of a nonlinear fitting. Values of the transition points ηc also obtained
via the nonlinear fitting algorithm. (a) and (b) Vectorial model. (c) and (d) Bivariate Gaussian noise. (e) and (f) Wrapped Gaussian noise. Dashed green lines in panels (a) and
(c) display the results obtained by initializing the system at random for the case γ = 3.5. All other results have been obtained starting from a fully ordered initial condition,
with all SPPs pointing in the same direction. Simulations were computed over a total of 2.5 × 105 time steps, with a thermalization of 5 × 104 time steps.
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In the case of the vectorial Vicsek model [see Fig. 4(a)], we
are clearly in the presence of a first-order transition. The critical
value ηc, at which the discontinuity of the order parameter takes
place, decreases with the degree exponent γ , but the overall dis-
continuous character of the transition seems to be preserved. The
hybrid nature of the transition, predicted by the mean-field anal-
ysis, is still manifest on networks, given by a critical singularity
in the vicinity of the transition in the ordered phase described by
Eq. (43). Figure 4(b) shows this behavior, with the dashed lines
being the result of a non-linear fitting procedure. A decrease of
β upon increasing γ can be appreciated. Table I reports the esti-
mated values of β for each case, as obtained from the non-linear
fitting.

For the case of the model with bivariate noise, the transition
displayed in networks has a second-order nature, again in agree-
ment with mean-field theory [see Fig. 4(c)]. The critical exponent
β characterizing the transition appears to have a value roughly
independent of the critical exponent and just slightly below the
mean-field value β = 1/2 [see Table I and Fig. 4(d)]. A second-
order transition in the standard Vicsek model on scale-free networks
had been studied in a previous work,16 where it was shown that the
presence of a transition at ηc < 1 depends on the exponent γ of the
network.

The wrapped Gaussian case follows the same trend than the
previous instances: the behavior of the order parameter follows that
of the mean-field [see Fig. 4(e)], including the hybrid behavior close
to the discontinuity. In this case, the numerically estimated val-
ues of β also change with γ as in the vectorial model [see Table I
and Fig. 4(f)].

Finally, in order to illustrate the existence of multistability in
the vectorial and wrapped Gaussian noise, the green dashed lines in
Figs. 4(a) and 4(c) show the order parameter obtained in simulations
starting from random initial conditions, in which the SPPs point to
randomly chosen directions. Only results for γ = 3.5 are shown,
although the multistability of the vectorial and wrapped Gaussian
noise is present for all the tested networks.

In summary, we have shown that the different variants of
the Vicsek model with multiplicative noise in scale-free networks
preserve the nature of the mean-field phase transition. This is in
line with previous results on the standard Vicsek model in scale-
free networks16 and the standard and vectorial Vicsek in regular
networks.27 Scale-free networks display a large amount of degree
heterogeneity, which is reduced upon increasing the exponent γ .
Surprisingly, in both our results and those presented previously,16

the transitions in scale-free networks become closer to the mean-
field scenario by reducing γ . A possible reason for this phenomenon
might be that, although the networks become more heterogeneous,
their diameter also decreases by decreasing γ ,38 thus bringing them
closer to a globally coupled scenario. On the other hand, further
increase of γ leads to architectures with less degree heterogeneity,
but that also show stronger fluctuations in the size of the largest
degree,39 which can affect the behavior of dynamical systems devel-
oping on top of them.40 This fact could explain the distancing from
the mean-field prediction observed for large γ values. In the limit of
very large γ , corresponding to homogeneous networks, the mean-
field prediction is expected to hold, at least at the level of the critical
exponents.

VI. MULTIPLICATIVE NOISE MODELS ON EUCLIDEAN

SPACE

We finally study the effect of different multiplicative noise
terms in a two-dimensional space in which the interactions between
SPPs are determined by the position of each unit. The spatial short-
range interactions correspond to the formulation of the original
scalar Vicsek model,10 in which interacting neighbors are chosen fol-
lowing the metric rule in Eq. (6). Initial numerical results seemed
to indicate that the model undergoes a kinetic second-order phase
transition, characterized by an exponent β similar to 1/2. Nowa-
days, it is well known that both original and vectorial formulations
of the Vicsek model with short-range spatial interactions display
a first-order transition with a coexistence region. Whereas for the
vectorial model, this situation is readily seen and in agreement with
the mean-field results, the first-order character of the original Vic-
sek model has been largely debated, since the transition appears to
be affected by strong finite-size effects.11,28,41,41,42 Nonetheless, the

FIG. 5. Sample order parameter φ obtained from numerical simulations in 2D
space with metric interactions. (a) Results of the vectorial Vicsek model. (b)
Results of the Vicsek model with wrapped Gaussian noise. Results correspond
to systems with density n = 2 and size L = 128 (red circles) and 256 (blue
squares). The length of the simulations is 2.5 × 105 time steps including a ther-
malization of 5 × 104 time steps. Each simulation initial condition corresponds
to the final configuration of the previous simulation. Continuous lines and points
correspond to η being increased, whereas dashed lines in panel (b) correspond
to decreasing η.
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evidence clearly indicates that, with periodic boundary conditions,
the transition from disorder to order remains discontinuous, with
a region of coexistence characterized by the formation of bands of
high density in the ordered phase.11,13,22,28 The fact that the Vicsek
model in the space presents a transition much different from that
seen in complex networks or the mean-field limit is due to the strong
effects caused by the interplay between density and coupling aris-
ing from the short-range spatial interactions. Changing the way in
which such short-range interactions are established can lead to a
qualitatively different behavior. This is the case, for instance, of non-
metric interactions.14 Therefore, it is a priori unclear which behavior
we are going to observe in the different models of multiplicative
noise we consider here.

In Fig. 5, we display the results of numerical simulations for
vectorial and wrapped Gaussian models with metric interactions on
a square of size L endowed with periodic boundary conditions. In
our simulations, the system size scales with L so that the density
of particles is kept constant to the value n = N/L2 = 2. We used a
radius of interaction with neighboring particles of r0 = 1 and the
particles move at a speed v0 = 0.5. The length of the simulations
is 2.5 × 105 time steps, including a thermalization of 5 × 104 time
steps. Simulations have been performed adiabatically increasing η,
except for dashed lines of Fig. 5(b), which correspond to an adiabatic
decrease of the control parameter η. Both vectorial and wrapped
Gaussian distribution noise models display a clear discontinuous

FIG. 6. (a) Order parameter φ obtained as a time average from numerical sim-
ulations of the model with spatial interactions and bivariate Gaussian noise.
Red squares, blue circles, and green triangles correspond to simulations with
a lattice of side length L = 128, 256, and 512, with density n = 2. The inset
shows the hysteresis loop obtained by adiabatically increasing (green triangles)
and decreasing (black stars) η. Each simulation has been computed over a
time window of 2.5 × 105 time steps including a thermalization of 5 × 104 time
steps. (b) Snapshot of the system at the ordered state for L = 512, n = 2, and
η = 0.525. Each dot indicates the position of a particle (xj(t), yj(t)) in the Euclid-
ian plane. The color of each particle indicates the orientation. Only 10% of the
particles are shown. (c) Time series of the order parameter for L = 256 and
η = 0.521 showing bistability between the ordered and disordered phases in a
longer simulation.

transition, with a region of the coexistence of ordered bands and
disorder. Beyond the coexistence region, the bands become unstable
and the Toner–Tu ordered phase predominates. Overall, the sce-
nario is consistent with the usual bifurcation diagram of the scalar
Vicsek model.22 In this case, the existence of a hybrid scaling behav-
ior at the transition point is not clear, as simulations of the spatial
systems display strong finite-size effects.

More interesting is the case of the bivariate Gaussian noise.
Figure 6(a) shows the results obtained for different system sizes.
Although the transition appears to be continuous for small systems,
for large enough sizes (L = 256 and 512), it is possible to observe a
discontinuity on φ, including a hysteresis loop [see inset of Fig. 6(a)].
Moreover, as reported in Fig. 6(b), snapshots of the simulations
close to the transition point show the existence of bands of ordered
particles, a signature of the classical bifurcation diagram of self-
propelled polar particles.22 Finally, Fig. 6(c) shows a time series of
the order parameter for L = 256, where the bistability between the
ordered and disordered phases becomes evident. Therefore, despite
finite-size effects, our results indicate that all spatial models share
a universal first-order transition toward the formation of ordered
bands, with a coexistence region.

VII. DISCUSSION

Simple models of SPPs provide a framework to study the mech-
anisms underlying the onset of self-organized collective motion. In
this paper, we introduced and studied a class of Vicsek-like mod-
els where the system dynamics depends on two key elements: the
definition of neighboring particles toward which an individual tends
to align and a stochastic source of angular noise that models the
difficulties of a single individual to perfectly align with its neigh-
bors. Previous studies considered different instances of interaction
rules,14–16 but less work has been devoted to the effect of different
sources of angular noise on the onset of collective motion. Two
main stochastic angular noise terms have been used in the liter-
ature: the uniform distribution introduced on the original Vicsek
model, and the vectorial noise proposed by Grégoire and Chaté,13

which, as we show, induces a multiplicative effect. Our derivation of
the angular probability distribution for the vectorial noise provides
an explicit relation between the local polarization of an SPP and
the noise intensity, which appears to be mediated by the parameter
ν = η/a. Remarkably, the resulting probability density turns out to
be rather non-generic, with a piecewise distribution that is peaked at
the extremes for small noise values (or large local polarization) and
unimodal otherwise.

We have extended the analysis of multiplicative noise in
Vicsek-like models by proposing two simpler and more generic
angular probability distributions for the stochastic source. The case
of bivariate Gaussian noise is conceptually similar to that of the vec-
torial noise, where the angular distribution needs to be computed a
posteriori. In this case, the parameter ν = η/a also arises naturally
from the definition of the system. On the other hand, the multi-
plicative character of the wrapped Gaussian distribution is imposed
with the definition of a standard deviation that depends on the local
polarization.

Despite being qualitatively similar, the differences between
the three multiplicative models studied here arise already at the
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mean-field level, which is given in a generic form by solving a
self-consistent equation involving the mean-resultant length of the
angular distribution. Surprisingly, the character of the transition
changes greatly with the choice of the stochastic term, being a first-
order hybrid transition for the vectorial and wrapped Gaussian
distribution, and second order for the bivariate Gaussian model.
Simulations in complex networks show a scenario consistent with
that of the mean-field analysis, where different choices for the noise
lead to different behaviors.

On the other hand, the emergence of collective motion in spa-
tial models with short-range interactions follows a mechanism of a
different nature. In all the studied cases, numerical simulations with
a large enough number of particles reveal a first-order transition
including hysteresis and the formation of high-density bands. The
scenario is reminiscent of that of the original Vicsek model, where
the phase transition for the spatial model does not correspond to
that seen in the mean-field or networked models.22,42 Therefore, we
conclude that the interplay between density and coupling that acts
on spatial models induces a rather generic phase diagram in which
the peculiarities of the noise distributions considered here play a
minor role as far as the order of the transition is concerned.

Overall, we have shown that Vicsek-like models under the
effect of general types of stochastic sources can be solved at the
mean-field level through the mean-resultant length of the noise dis-
tribution. The simplicity of such mean-field analysis allows us to
analyze how different noise variants cause different types of phase
transitions. Moreover, the results of simulations in complex net-
works show that the mean-field system is a good proxy to study
the dynamics of SPPs interacting through a given irregular topology.
When considering metric interactions, the mean-field solution is no
longer a good predictor for the system. Nonetheless, our framework
can provide an appropriate starting point for further theoretical
studies on Euclidean space.

Other interaction rules exist for the Vicsek model, two interest-
ing cases being non-metric spatial interactions and restricted field
of vision. In the first case it has been shown that, for the vectorial
noise, the transition becomes second-order,43 thus corresponding
to a different mechanism of the metric interaction rule and also to
that of the mean-field system. In the case of the restricted field of
vision with metric interactions, it has been shown that the transi-
tion depends on the radial field of vision,44 thus different noise terms
might indeed play an important role there as well. Both cases deserve
thus a deeper analysis, which should be addressed in future studies.

A single SPPs on a Vicsek-like model can be interpreted as
an interacting random walker in a two-dimensional space. Accord-
ingly, the inclusion of multiplicative noise in the model induces a
correlation between the direction of the next step and the state of
the system. This idea brings the multiplicative models studied here
close to the model of active matter through persistent random walk-
ers proposed by Escaff et al.45 in one dimension. In their model, an
individual changes its direction only at certain time steps with a fre-
quency that depends on the local polarization. In our case, a change
in direction happens at all times but it is much smaller if the local
polarization is high. Thus, we believe that a two-dimensional model
based on the idea of persistent random walks should produce similar
behavior to the one exposed here, as well as could benefit from the
analytical tools existing for that case.

The study of minimal models provides solid grounds to study
complex phenomena and understand the effects of the different
elements that compose the model on the overall onset of collec-
tive motion. On the other hand, it is also important to work on
realistic setups in order to retain new sources for other types of phe-
nomenology. To this extent, possible extensions of our work include
considering continuous time models and allowing for steps of dif-
ferent lengths (variable velocity),46 which can be correlated with the
local polarization and/or the random turning angle. Also, the impact
of different multiplicative noise sources could be studied in mod-
els of SPPs displaying complex types of pattern formation arising in
deterministic scenarios.47,48 Finally, in line with the growing exper-
imental work on the field,7,49–52 future work should also study the
validity of the different models on the basis of empirical evidence.
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